

 pikepdf

 latest

 Introduction

	Installation
	Tutorial

Release notes

	Release notes

Topics

	PDF split, merge, and document assembly
	Working with pages
	Object model
	Stream objects
	Working with content streams
	Working with images
	Overlays, underlays, watermarks, n-up
	Character encoding
	Metadata
	Outlines
	Name trees
	Attaching files to a PDF
	Default appearance in PDF viewers
	PDF security

API

	Main objects	Pdf	Pdf.Root
	Pdf.add_blank_page()
	Pdf.allow
	Pdf.attachments
	Pdf.check()
	Pdf.check_linearization()
	Pdf.close()
	Pdf.copy_foreign()
	Pdf.docinfo
	Pdf.encryption
	Pdf.extension_level
	Pdf.filename
	Pdf.flatten_annotations()
	Pdf.generate_appearance_streams()
	Pdf.get_object()
	Pdf.get_warnings()
	Pdf.is_encrypted
	Pdf.is_linearized
	Pdf.make_indirect()
	Pdf.make_stream()
	Pdf.new()
	Pdf.objects
	Pdf.open()
	Pdf.open_metadata()
	Pdf.open_outline()
	Pdf.owner_password_matched
	Pdf.pages
	Pdf.pdf_version
	Pdf.remove_unreferenced_resources()
	Pdf.root
	Pdf.save()
	Pdf.show_xref_table()
	Pdf.trailer
	Pdf.user_password_matched

	pikepdf.open()
	pikepdf.new()
	Access modes	ObjectStreamMode	ObjectStreamMode.disable
	ObjectStreamMode.generate
	ObjectStreamMode.preserve

	StreamDecodeLevel	StreamDecodeLevel.all
	StreamDecodeLevel.generalized
	StreamDecodeLevel.none
	StreamDecodeLevel.specialized

	Encryption	Encryption.R
	Encryption.aes
	Encryption.allow
	Encryption.metadata
	Encryption.owner
	Encryption.user

	Object construction	Object	Object.__bool__()
	Object.__bytes__()
	Object.__contains__()
	Object.__copy__()
	Object.__delattr__()
	Object.__delitem__()
	Object.__dir__()
	Object.__eq__()
	Object.__float__()
	Object.__getattr__()
	Object.__getitem__()
	Object.__hash__()
	Object.__int__()
	Object.__iter__()
	Object.__len__()
	Object.__setattr__()
	Object.__setitem__()
	Object.append()
	Object.as_dict()
	Object.as_list()
	Object.emplace()
	Object.extend()
	Object.get()
	Object.get_raw_stream_buffer()
	Object.get_stream_buffer()
	Object.images
	Object.is_indirect
	Object.is_owned_by()
	Object.is_rectangle
	Object.items()
	Object.keys()
	Object.objgen
	Object.parse()
	Object.read_bytes()
	Object.read_raw_bytes()
	Object.same_owner_as()
	Object.stream_dict
	Object.to_json()
	Object.unparse()
	Object.with_same_owner_as()
	Object.wrap_in_array()
	Object.write()

	Name	Name.__new__()
	Name.random()

	String	String.__new__()

	Array	Array.__new__()

	Dictionary	Dictionary.__new__()

	Stream	Stream.__new__()

	Operator	Operator.__new__()

	Common PDF data structures	Matrix	Matrix.__array__()
	Matrix.__init__()
	Matrix.__matmul__()
	Matrix.a
	Matrix.as_array()
	Matrix.b
	Matrix.c
	Matrix.d
	Matrix.e
	Matrix.encode()
	Matrix.f
	Matrix.inverse()
	Matrix.rotated()
	Matrix.scaled()
	Matrix.shorthand
	Matrix.transform()
	Matrix.translated()

	Rectangle	Rectangle.__and__()
	Rectangle.__init__()
	Rectangle.as_array()
	Rectangle.height
	Rectangle.llx
	Rectangle.lly
	Rectangle.lower_left
	Rectangle.lower_right
	Rectangle.upper_left
	Rectangle.upper_right
	Rectangle.urx
	Rectangle.ury
	Rectangle.width

	Content stream elements	ContentStreamInstruction	ContentStreamInstruction.operands
	ContentStreamInstruction.operator

	ContentStreamInlineImage	ContentStreamInlineImage.iimage
	ContentStreamInlineImage.operands
	ContentStreamInlineImage.operator

	Internal objects	PageList	PageList.append()
	PageList.extend()
	PageList.from_objgen()
	PageList.index()
	PageList.insert()
	PageList.p()
	PageList.remove()
	PageList.reverse()

	_ObjectList	_ObjectList.append()
	_ObjectList.clear()
	_ObjectList.count()
	_ObjectList.extend()
	_ObjectList.insert()
	_ObjectList.pop()
	_ObjectList.remove()

	ObjectType	ObjectType.array
	ObjectType.boolean
	ObjectType.dictionary
	ObjectType.inlineimage
	ObjectType.integer
	ObjectType.name_
	ObjectType.null
	ObjectType.operator
	ObjectType.real
	ObjectType.reserved
	ObjectType.stream
	ObjectType.string
	ObjectType.uninitialized

	Jobs	Job	Job.EXIT_CORRECT_PASSWORD
	Job.EXIT_ERROR
	Job.EXIT_IS_NOT_ENCRYPTED
	Job.EXIT_WARNING
	Job.LATEST_JOB_JSON
	Job.LATEST_JSON
	Job.__init__()
	Job.check_configuration()
	Job.create_pdf()
	Job.creates_output
	Job.encryption_status
	Job.exit_code
	Job.has_warnings
	Job.job_json_schema()
	Job.json_out_schema()
	Job.message_prefix
	Job.run()
	Job.write_pdf()

	Support models
	Content streams
	Exceptions
	Settings

Reference

	Architecture
	Build process notes
	Contributing guidelines
	Debugging
	Resources

 pikepdf

 	
	Main objects
	
 Edit on GitHub

Main objects

	
class pikepdf.Pdf(*args, **kwargs)
		
property Root
		Return type:
	Object

	
add_blank_page(*, page_size=...)
	Add a blank page to this PDF.

If pages already exist, the page will be added to the end. Pages may be
reordered using Pdf.pages.

The caller may add content to the page by modifying its objects after creating
it.

	Parameters:
	page_size (tuple) – The size of the page in PDF units (1/72 inch or 0.35mm).
Default size is set to a US Letter 8.5” x 11” page.

	Return type:
	Page

	
property allow
	Report permissions associated with this PDF.

By default these permissions will be replicated when the PDF is
saved. Permissions may also only be changed when a PDF is being saved,
and are only available for encrypted PDFs. If a PDF is not encrypted,
all operations are reported as allowed.

pikepdf has no way of enforcing permissions.

	Return type:
	pikepdf.models.encryption.Permissions

	
property attachments
	Returns a mapping that provides access to all files attached to this PDF.

PDF supports attaching (or embedding, if you prefer) any other type of file,
including other PDFs. This property provides read and write access to
these objects by filename.

	Return type:
	Attachments

	
check()
	Check if PDF is syntactically well-formed.

Similar to qpdf --check, checks for syntax
or structural problems in the PDF. This is mainly useful to PDF
developers and may not be informative to the average user. PDFs with
these problems still render correctly, if PDF viewers are capable of
working around the issues they contain. In many cases, pikepdf can
also fix the problems.

An example problem found by this function is a xref table that is
missing an object reference. A page dictionary with the wrong type of
key, such as a string instead of an array of integers for its mediabox,
is not the sort of issue checked for. If this were an XML checker, it
would tell you if the XML is well-formed, but could not tell you if
the XML is valid XHTML or if it can be rendered as a usable web page.

This function also attempts to decompress all streams in the PDF.
If no JBIG2 decoder is available and JBIG2 images are presented,
a warning will occur that JBIG2 cannot be checked.

This function returns a list of strings describing the issues. The
text is subject to change and should not be treated as a stable API.

	Returns:
	Empty list if no issues were found. List of issues as text strings
if issues were found.

	Return type:
	list[str]

	
check_linearization(stream=...)
	Reports information on the PDF’s linearization.

	Parameters:
	stream (object) – A stream to write this information too; must
implement .write() and .flush() method. Defaults to
sys.stderr.

	Returns:
	True if the file is correctly linearized, and False if
the file is linearized but the linearization data contains errors
or was incorrectly generated.

	Raises:
	RuntimeError – If the PDF in question is not linearized at all.

	Return type:
	bool

	
close()
	Close a Pdf object and release resources acquired by pikepdf.

If pikepdf opened the file handle it will close it (e.g. when opened with a file
path). If the caller opened the file for pikepdf, the caller close the file.
with blocks will call close when exit.

pikepdf lazily loads data from PDFs, so some pikepdf.Object may
implicitly depend on the pikepdf.Pdf being open. This is always the
case for pikepdf.Stream but can be true for any object. Do not close
the Pdf object if you might still be accessing content from it.

When an Object is copied from one Pdf to another, the Object is
copied into the destination Pdf immediately, so after accessing all desired
information from the source Pdf it may be closed.

Changed in version 3.0: In pikepdf 2.x, this function actually worked by resetting to a very short
empty PDF. Code that relied on this quirk may not function correctly.

	Return type:
	None

	
copy_foreign(h)
	Copy an Object from a foreign Pdf and return a copy.

The object must be owned by a different Pdf from this one.

If the object has previously been copied, return a reference to
the existing copy, even if that copy has been modified in the meantime.

If you want to copy a page from one PDF to another, use:
pdf_b.pages[0] = pdf_a.pages[0]. That interface accounts for the
complexity of copying pages.

This function is used to copy a pikepdf.Object that is owned by
some other Pdf into this one. This is performs a deep (recursive) copy
and preserves all references that may exist in the foreign object. For
example, if

>>> object_a = pdf.copy_foreign(object_x)
>>> object_b = pdf.copy_foreign(object_y)
>>> object_c = pdf.copy_foreign(object_z)

and object_z is a shared descendant of both object_x and object_y
in the foreign PDF, then object_c is a shared descendant of both
object_a and object_b in this PDF. If object_x and object_y
refer to the same object, then object_a and object_b are the
same object.

It also copies all pikepdf.Stream objects. Since this may copy
a large amount of data, it is not done implicitly. This function does
not copy references to pages in the foreign PDF - it stops at page
boundaries. Thus, if you use copy_foreign() on a table of contents
(/Outlines dictionary), you may have to update references to pages.

Direct objects, including dictionaries, do not need copy_foreign().
pikepdf will automatically convert and construct them.

Note

pikepdf automatically treats incoming pages from a foreign PDF as
foreign objects, so Pdf.pages does not require this treatment.

See also

QPDF::copyForeignObject

Changed in version 2.1: Error messages improved.

	Parameters:
	h (Object) –

	Return type:
	Object

	
property docinfo
	Access the (deprecated) document information dictionary.

The document information dictionary is a brief metadata record that can
store some information about the origin of a PDF. It is deprecated and
removed in the PDF 2.0 specification (not deprecated from the
perspective of pikepdf). Use the .open_metadata() API instead, which
will edit the modern (and unfortunately, more complicated) XMP metadata
object and synchronize changes to the document information dictionary.

This property simplifies access to the actual document information
dictionary and ensures that it is created correctly if it needs to be
created.

A new, empty dictionary will be created if this property is accessed
and dictionary does not exist. (This is to ensure that convenient code
like pdf.docinfo[Name.Title] = "Title" will work when the dictionary
does not exist at all.)

You can delete the document information dictionary by deleting this property,
del pdf.docinfo. Note that accessing the property after deleting it
will re-create with a new, empty dictionary.

Changed in version 2.4: Added support for del pdf.docinfo.

	Return type:
	Object

	
property encryption
	Report encryption information for this PDF.

Encryption settings may only be changed when a PDF is saved.

	Return type:
	pikepdf.models.encryption.EncryptionInfo

	
property extension_level
	Returns the extension level of this PDF.

If a developer has released multiple extensions of a PDF version against
the same base version value, they shall increase the extension level
by 1. To be interpreted with pdf_version.

	Return type:
	int

	
property filename
	The source filename of an existing PDF, when available.

When the Pdf was created from scratch, this returns ‘empty PDF’.
When the Pdf was created from a stream, the return value is the
word ‘stream’ followed by some information about the stream, if
available.

	Return type:
	str

	
flatten_annotations(mode)
	Flattens all PDF annotations into regular PDF content.

Annotations are markup such as review comments, highlights, proofreading
marks. User data entered into interactive form fields also counts as an
annotation.

When annotations are flattened, they are “burned into” the regular
content stream of the document and the fact that they were once annotations
is deleted. This can be useful when preparing a document for printing,
to ensure annotations are printed, or to finalize a form that should
no longer be changed.

	Parameters:
	mode (str) – One of the strings 'all', 'screen', 'print'. If
omitted or set to empty, treated as 'all'. 'screen'
flattens all except those marked with the PDF flag /NoView.
'print' flattens only those marked for printing.
Default is 'all'.

	Return type:
	None

New in version 2.11.

	
generate_appearance_streams()
	Generates appearance streams for AcroForm forms and form fields.

Appearance streams describe exactly how annotations and form fields
should appear to the user. If omitted, the PDF viewer is free to
render the annotations and form fields according to its own settings,
as needed.

For every form field in the document, this generates appearance
streams, subject to the limitations of QPDF’s ability to create
appearance streams.

When invoked, this method will modify the Pdf in memory. It may be
best to do this after the Pdf is opened, or before it is saved,
because it may modify objects that the user does not expect to be
modified.

If Pdf.Root.AcroForm.NeedAppearances is False or not present, no
action is taken (because no appearance streams need to be generated).
If True, the appearance streams are generated, and the NeedAppearances
flag is set to False.

	See:
	https://github.com/qpdf/qpdf/blob/bf6b9ba1c681a6fac6d585c6262fb2778d4bb9d2/include/qpdf/QPDFFormFieldObjectHelper.hh#L216

New in version 2.11.

	Return type:
	None

	
get_object(objgen: tuple[int, int])
	Retrieve an object from the PDF.

Can be called with either a 2-tuple of (objid, gen) or
two integers objid and gen.

	
get_warnings()
		Return type:
	list

	
property is_encrypted
	Returns True if the PDF is encrypted.

For information about the nature of the encryption, see
Pdf.encryption.

	Return type:
	bool

	
property is_linearized
	Returns True if the PDF is linearized.

Specifically returns True iff the file starts with a linearization
parameter dictionary. Does no additional validation.

	Return type:
	bool

	
make_indirect(obj)
	Attach an object to the Pdf as an indirect object.

Direct objects appear inline in the binary encoding of the PDF.
Indirect objects appear inline as references (in English, “look
up object 4 generation 0”) and then read from another location in
the file. The PDF specification requires that certain objects
are indirect - consult the PDF specification to confirm.

Generally a resource that is shared should be attached as an
indirect object. pikepdf.Stream objects are always
indirect, and creating them will automatically attach it to the
Pdf.

	Parameters:
	obj (T) – The object to attach. If this a pikepdf.Object,
it will be attached as an indirect object. If it is
any other Python object, we attempt conversion to
pikepdf.Object attach the result. If the
object is already an indirect object, a reference to
the existing object is returned. If the pikepdf.Object
is owned by a different Pdf, an exception is raised; use
pikepdf.Object.copy_foreign() instead.

	Return type:
	T

See also

pikepdf.Object.is_indirect()

	
make_stream(data, d=None, **kwargs)
	Create a new pikepdf.Stream object that is attached to this PDF.

	See:
	pikepdf.Stream.__new__()

	Parameters:
	data (bytes) –

	Return type:
	pikepdf.objects.Stream

	
classmethod new()
	Create a new, empty PDF.

This is best when you are constructing a PDF from scratch.

In most cases, if you are working from an existing PDF, you should open the
PDF using pikepdf.Pdf.open() and transform it, instead of a creating
a new one, to preserve metadata and structural information. For example,
if you want to split a PDF into two parts, you should open the PDF and
transform it into the desired parts, rather than creating a new PDF and
copying pages into it.

	Return type:
	Pdf

	
property objects
	Return an iterable list of all objects in the PDF.

After deleting content from a PDF such as pages, objects related
to that page, such as images on the page, may still be present in
this list.

	Return type:
	_ObjectList

	
static open(filename_or_stream, *, password='', hex_password=False, ignore_xref_streams=False, suppress_warnings=True, attempt_recovery=True, inherit_page_attributes=True, access_mode=AccessMode.default, allow_overwriting_input=False)
	Open an existing file at filename_or_stream.

If filename_or_stream is path-like, the file will be opened for reading.
The file should not be modified by another process while it is open in
pikepdf, or undefined behavior may occur. This is because the file may be
lazily loaded. Despite this restriction, pikepdf does not try to use any OS
services to obtain an exclusive lock on the file. Some applications may
want to attempt this or copy the file to a temporary location before
editing. This behaviour changes if allow_overwriting_input is set: the whole
file is then read and copied to memory, so that pikepdf can overwrite it
when calling .save().

When this function is called with a stream-like object, you must ensure
that the data it returns cannot be modified, or undefined behavior will
occur.

Any changes to the file must be persisted by using .save().

If filename_or_stream has .read() and .seek() methods, the file
will be accessed as a readable binary stream. pikepdf will read the
entire stream into a private buffer.

.open() may be used in a with-block; .close() will be called when
the block exits, if applicable.

Whenever pikepdf opens a file, it will close it. If you open the file
for pikepdf or give it a stream-like object to read from, you must
release that object when appropriate.

Examples

>>> with Pdf.open("test.pdf") as pdf:
... pass

>>> pdf = Pdf.open("test.pdf", password="rosebud")

	Parameters:
		filename_or_stream (pathlib.Path | str | BinaryIO) – Filename or Python readable and seekable file
stream of PDF to open.

	password (str | bytes) – User or owner password to open an
encrypted PDF. If the type of this parameter is str
it will be encoded as UTF-8. If the type is bytes it will
be saved verbatim. Passwords are always padded or
truncated to 32 bytes internally. Use ASCII passwords for
maximum compatibility.

	hex_password (bool) – If True, interpret the password as a
hex-encoded version of the exact encryption key to use, without
performing the normal key computation. Useful in forensics.

	ignore_xref_streams (bool) – If True, ignore cross-reference
streams. See qpdf documentation.

	suppress_warnings (bool) – If True (default), warnings are not
printed to stderr. Use pikepdf.Pdf.get_warnings() to
retrieve warnings.

	attempt_recovery (bool) – If True (default), attempt to recover
from PDF parsing errors.

	inherit_page_attributes (bool) – If True (default), push attributes
set on a group of pages to individual pages

	access_mode (AccessMode) – If .default, pikepdf will
decide how to access the file. Currently, it will always
selected stream access. To attempt memory mapping and fallback
to stream if memory mapping failed, use .mmap. Use
.mmap_only to require memory mapping or fail
(this is expected to only be useful for testing). Applications
should be prepared to handle the SIGBUS signal on POSIX in
the event that the file is successfully mapped but later goes
away.

	allow_overwriting_input (bool) – If True, allows calling .save()
to overwrite the input file. This is performed by loading the
entire input file into memory at open time; this will use more
memory and may recent performance especially when the opened
file will not be modified.

	Raises:
		pikepdf.PasswordError – If the password failed to open the
file.

	pikepdf.PdfError – If for other reasons we could not open
the file.

	TypeError – If the type of filename_or_stream is not
usable.

	FileNotFoundError – If the file was not found.

	Return type:
	Pdf

Note

When filename_or_stream is a stream and the stream is located on a
network, pikepdf assumes that the stream using buffering and read caches
to achieve reasonable performance. Streams that fetch data over a network
in response to every read or seek request, no matter how small, will
perform poorly. It may be easier to download a PDF from network to
temporary local storage (such as io.BytesIO), manipulate it, and
then re-upload it.

Changed in version 3.0: Keyword arguments now mandatory for everything except the first
argument.

	
open_metadata(set_pikepdf_as_editor=True, update_docinfo=True, strict=False)
	Open the PDF’s XMP metadata for editing.

There is no .close() function on the metadata object, since this is
intended to be used inside a with block only.

For historical reasons, certain parts of PDF metadata are stored in
two different locations and formats. This feature coordinates edits so
that both types of metadata are updated consistently and “atomically”
(assuming single threaded access). It operates on the Pdf in memory,
not any file on disk. To persist metadata changes, you must still use
Pdf.save().

Example

>>> pdf = pikepdf.Pdf.open("../tests/resources/graph.pdf")
>>> with pdf.open_metadata() as meta:
... meta['dc:title'] = 'Set the Dublic Core Title'
... meta['dc:description'] = 'Put the Abstract here'

	Parameters:
		set_pikepdf_as_editor (bool) – Automatically update the metadata pdf:Producer
to show that this version of pikepdf is the most recent software to
modify the metadata, and xmp:MetadataDate to timestamp the update.
Recommended, except for testing.

	update_docinfo (bool) – Update the standard fields of DocumentInfo
(the old PDF metadata dictionary) to match the corresponding
XMP fields. The mapping is described in
PdfMetadata.DOCINFO_MAPPING. Nonstandard DocumentInfo
fields and XMP metadata fields with no DocumentInfo equivalent
are ignored.

	strict (bool) – If False (the default), we aggressively attempt
to recover from any parse errors in XMP, and if that fails we
overwrite the XMP with an empty XMP record. If True, raise
errors when either metadata bytes are not valid and well-formed
XMP (and thus, XML). Some trivial cases that are equivalent to
empty or incomplete “XMP skeletons” are never treated as errors,
and always replaced with a proper empty XMP block. Certain
errors may be logged.

	Return type:
	pikepdf.models.metadata.PdfMetadata

	
open_outline(max_depth=15, strict=False)
	Open the PDF outline (“bookmarks”) for editing.

Recommend for use in a with block. Changes are committed to the
PDF when the block exits. (The Pdf must still be opened.)

Example

>>> pdf = pikepdf.open('../tests/resources/outlines.pdf')
>>> with pdf.open_outline() as outline:
... outline.root.insert(0, pikepdf.OutlineItem('Intro', 0))

	Parameters:
		max_depth (int) – Maximum recursion depth of the outline to be
imported and re-written to the document. 0 means only
considering the root level, 1 the first-level
sub-outline of each root element, and so on. Items beyond
this depth will be silently ignored. Default is 15.

	strict (bool) – With the default behavior (set to False),
structural errors (e.g. reference loops) in the PDF document
will only cancel processing further nodes on that particular
level, recovering the valid parts of the document outline
without raising an exception. When set to True, any such
error will raise an OutlineStructureError, leaving the
invalid parts in place.
Similarly, outline objects that have been accidentally
duplicated in the Outline container will be silently
fixed (i.e. reproduced as new objects) or raise an
OutlineStructureError.

	Return type:
	pikepdf.models.outlines.Outline

	
property owner_password_matched
	Returns True if the owner password matched when the Pdf was opened.

It is possible for both the user and owner passwords to match.

New in version 2.10.

	Return type:
	bool

	
property pages
	Returns the list of pages.

	Return type:
	PageList

	
property pdf_version
	The version of the PDF specification used for this file, such as ‘1.7’.

More precise information about the PDF version can be opened from the
Pdf’s XMP metadata.

	Return type:
	str

	
remove_unreferenced_resources()
	Remove from /Resources any object not referenced in page’s contents.

PDF pages may share resource dictionaries with other pages. If
pikepdf is used for page splitting, pages may reference resources
in their /Resources dictionary that are not actually required.
This purges all unnecessary resource entries.

For clarity, if all references to any type of object are removed, that
object will be excluded from the output PDF on save. (Conversely, only
objects that are discoverable from the PDF’s root object are included.)
This function removes objects that are referenced from the page /Resources
dictionary, but never called for in the content stream, making them
unnecessary.

Suggested before saving, if content streams or /Resources dictionaries
are edited.

	Return type:
	None

	
property root
	The /Root object of the PDF.

	Return type:
	Object

	
save(filename_or_stream=None, *, static_id=False, preserve_pdfa=True, min_version='', force_version='', fix_metadata_version=True, compress_streams=True, stream_decode_level=None, object_stream_mode=ObjectStreamMode.preserve, normalize_content=False, linearize=False, qdf=False, progress=None, encryption=None, recompress_flate=False, deterministic_id=False)
	Save all modifications to this pikepdf.Pdf.

	Parameters:
		filename_or_stream (pathlib.Path | str | BinaryIO | None) – Where to write the output. If a file
exists in this location it will be overwritten.
If the file was opened with allow_overwriting_input=True,
then it is permitted to overwrite the original file, and
this parameter may be omitted to implicitly use the original
filename. Otherwise, the filename may not be the same as the
input file, as overwriting the input file would corrupt data
since pikepdf using lazy loading.

	static_id (bool) – Indicates that the /ID metadata, normally
calculated as a hash of certain PDF contents and metadata
including the current time, should instead be set to a static
value. Only use this for debugging and testing. Use
deterministic_id if you want to get the same /ID for
the same document contents.

	preserve_pdfa (bool) – Ensures that the file is generated in a
manner compliant with PDF/A and other stricter variants.
This should be True, the default, in most cases.

	min_version (str | tuple[str, int]) – Sets the minimum version of PDF
specification that should be required. If left alone QPDF
will decide. If a tuple, the second element is an integer, the
extension level. If the version number is not a valid format,
QPDF will decide what to do.

	force_version (str | tuple[str, int]) – Override the version recommend by QPDF,
potentially creating an invalid file that does not display
in old versions. See QPDF manual for details. If a tuple, the
second element is an integer, the extension level.

	fix_metadata_version (bool) – If True (default) and the XMP metadata
contains the optional PDF version field, ensure the version in
metadata is correct. If the XMP metadata does not contain a PDF
version field, none will be added. To ensure that the field is
added, edit the metadata and insert a placeholder value in
pdf:PDFVersion. If XMP metadata does not exist, it will
not be created regardless of the value of this argument.

	object_stream_mode (ObjectStreamMode) – disable prevents the use of object streams.
preserve keeps object streams from the input file.
generate uses object streams wherever possible,
creating the smallest files but requiring PDF 1.5+.

	compress_streams (bool) –
Enables or disables the compression of
uncompressed stream objects. By default this is set to
True, and the only reason to set it to False is for
debugging or inspecting PDF contents.

When enabled, uncompressed stream objects will be compressed
whether they were uncompressed in the PDF when it was opened,
or when the user creates new pikepdf.Stream objects
attached to the PDF. Stream objects can also be created
indirectly, such as when content from another PDF is merged
into the one being saved.

Only stream objects that have no compression will be
compressed when this object is set. If the object is
compressed, compression will be preserved.

Setting compress_streams=False does not trigger decompression
unless decompression is specifically requested by setting
both compress_streams=False and stream_decode_level
to the desired decode level (e.g. .generalized will
decompress most non-image content).

This option does not trigger recompression of existing
compressed streams. For that, use recompress_flate.

The XMP metadata stream object, if present, is never
compressed, to facilitate metadata reading by parsers that
don’t understand the full structure of PDF.

	stream_decode_level (StreamDecodeLevel | None) – Specifies how
to encode stream objects. See documentation for
pikepdf.StreamDecodeLevel.

	recompress_flate (bool) – When disabled (the default), qpdf does not
uncompress and recompress streams compressed with the Flate
compression algorithm. If True, pikepdf will instruct qpdf to
do this, which may be useful if recompressing streams to a
higher compression level.

	normalize_content (bool) – Enables parsing and reformatting the
content stream within PDFs. This may debugging PDFs easier.

	linearize (bool) – Enables creating linear or “fast web view”,
where the file’s contents are organized sequentially so that
a viewer can begin rendering before it has the whole file.
As a drawback, it tends to make files larger.

	qdf (bool) – Save output QDF mode. QDF mode is a special output
mode in QPDF to allow editing of PDFs in a text editor. Use
the program fix-qdf to fix convert back to a standard
PDF.

	progress (Callable[[int], None] | None) – Specify a callback function that is called
as the PDF is written. The function will be called with an
integer between 0-100 as the sole parameter, the progress
percentage. This function may not access or modify the PDF
while it is being written, or data corruption will almost
certainly occur.

	encryption (pikepdf.models.encryption.Encryption | bool | None) – If False
or omitted, existing encryption will be removed. If True
encryption settings are copied from the originating PDF.
Alternately, an Encryption object may be provided that
sets the parameters for new encryption.

	deterministic_id (bool) – Indicates that the /ID metadata, normally
calculated as a hash of certain PDF contents and metadata
including the current time, should instead be computed using
only deterministic data like the file contents. At a small
runtime cost, this enables generation of the same /ID if
the same inputs are converted in the same way multiple times.
Does not work for encrypted files.

	Raises:
		PdfError –

	ForeignObjectError –

	ValueError –

	Return type:
	None

You may call .save() multiple times with different parameters
to generate different versions of a file, and you may continue
to modify the file after saving it. .save() does not modify
the Pdf object in memory, except possibly by updating the XMP
metadata version with fix_metadata_version.

Note

pikepdf.Pdf.remove_unreferenced_resources() before saving
may eliminate unnecessary resources from the output file if there
are any objects (such as images) that are referenced in a page’s
Resources dictionary but never called in the page’s content stream.

Note

pikepdf can read PDFs with incremental updates, but always
coalesces any incremental updates into a single non-incremental
PDF file when saving.

Note

If filename_or_stream is a stream and the process is interrupted during
writing, the stream may be left in a corrupt state. It is the
responsibility of the caller to manage the stream in this case.

Changed in version 2.7: Added recompress_flate.

Changed in version 3.0: Keyword arguments now mandatory for everything except the first
argument.

Changed in version 8.1: If filename_or_stream is a filename and that file exists, the new file
is written to a temporary file in the same directory and then moved into
place. This prevents the existing destination file from being corrupted
if the process is interrupted during writing; previously, corrupting the
destination file was possible. If no file exists at the destination, output
is written directly to the destination, but the destination will be deleted
if errors occur during writing. Prior to 8.1, the file was always written
directly to the destination, which could result in a corrupt destination
file if the process was interrupted during writing.

	
show_xref_table()
	Pretty-print the Pdf’s xref (cross-reference table).

	Return type:
	None

	
property trailer
	Provides access to the PDF trailer object.

See PDF 1.7 Reference Manual section 7.5.5. Generally speaking,
the trailer should not be modified with pikepdf, and modifying it
may not work. Some of the values in the trailer are automatically
changed when a file is saved.

	Return type:
	Object

	
property user_password_matched
	Returns True if the user password matched when the Pdf was opened.

It is possible for both the user and owner passwords to match.

New in version 2.10.

	Return type:
	bool

	
pikepdf.open()
	Alias for pikepdf.Pdf.open().

	
pikepdf.new()
	Alias for pikepdf.Pdf.new().

Access modes

	
class pikepdf.ObjectStreamMode(*args, **kwds)
	Options for saving object streams within PDFs.

Object streams are more a compact
way of saving certain types of data that was added in PDF 1.5. All
modern PDF viewers support object streams, but some third party tools
and libraries cannot read them.

	
disable = Ellipsis
	Disable the use of object streams.

If any object streams exist in the file, remove them when the file is saved.

	
generate = Ellipsis
	Preserve any existing object streams in the original file.

This is the default behavior.

	
preserve = Ellipsis
	Generate object streams.

	
class pikepdf.StreamDecodeLevel(*args, **kwds)
	Options for decoding streams within PDFs.

	
all = Ellipsis
	Do not attempt to apply any filters. Streams
remain as they appear in the original file. Note that
uncompressed streams may still be compressed on output. You can
disable that by saving with .save(..., compress_streams=False).

	
generalized = Ellipsis
	This is the default. libqpdf will apply
LZWDecode, ASCII85Decode, ASCIIHexDecode, and FlateDecode
filters on the input. When saved with
compress_streams=True, the default, the effect of this
is that streams filtered with these older and less efficient
filters will be recompressed with the Flate filter. As a
special case, if a stream is already compressed with
FlateDecode and compress_streams=True, the original
compressed data will be preserved.

	
none = Ellipsis
	In addition to uncompressing the
generalized compression formats, supported non-lossy
compression will also be be decoded. At present, this includes
the RunLengthDecode filter.

	
specialized = Ellipsis
	In addition to generalized and non-lossy
specialized filters, supported lossy compression filters will
be applied. At present, this includes DCTDecode (JPEG)
compression. Note that compressing the resulting data with
DCTDecode again will accumulate loss, so avoid multiple
compression and decompression cycles. This is mostly useful for
(low-level) retrieving image data; see pikepdf.PdfImage for
the preferred method.

	
class pikepdf.Encryption
	Specify the encryption settings to apply when a PDF is saved.

	
R = 6
	Select the security handler algorithm to use. Choose from:
2, 3, 4 or 6. By default, the highest version of
is selected (6). 5 is a deprecated algorithm that should
not be used.

	
aes = True
	If True, request the AES algorithm. If False, use RC4.
If omitted, AES is selected whenever possible (R >= 4).

	
allow
	The permissions to set.
If omitted, all permissions are granted to the user.

	
metadata = True
	If True, also encrypt the PDF metadata. If False,
metadata is not encrypted. Reading document metadata without
decryption may be desirable in some cases. Requires aes=True.
If omitted, metadata is encrypted whenever possible.

	
owner =
	The owner password to use. This allows full control
of the file. If blank, the PDF will be encrypted and
present as “(SECURED)” in PDF viewers. If the owner password
is blank, the user password should be as well.

	
user =
	The user password to use. With this password, some
restrictions will be imposed by a typical PDF reader.
If blank, the PDF can be opened by anyone, but only modified
as allowed by the permissions in allow.

Object construction

	
class pikepdf.Object
		
__bool__()
		Return type:
	bool

	
__bytes__()
		Return type:
	bytes

	
__contains__(obj)
		Parameters:
	obj (Object | str) –

	Return type:
	bool

	
__copy__()
		Return type:
	Object

	
__delattr__(name)
	Implement delattr(self, name).

	Parameters:
	name (str) –

	Return type:
	None

	
__delitem__(name)
		Parameters:
	name (str | pikepdf.objects.Name | int) –

	Return type:
	None

	
__dir__()
	Default dir() implementation.

	Return type:
	list

	
__eq__(other)
	Return self==value.

	Parameters:
	other (Any) –

	Return type:
	bool

	
__float__()
		Return type:
	float

	
__getattr__(name)
		Parameters:
	name (str) –

	Return type:
	Object

	
__getitem__(name)
		Parameters:
	name (str | pikepdf.objects.Name | int) –

	Return type:
	Object

	
__hash__()
	Return hash(self).

	Return type:
	int

	
__int__()
		Return type:
	int

	
__iter__()
		Return type:
	Iterable[Object]

	
__len__()
		Return type:
	int

	
__setattr__(name, value)
	Implement setattr(self, name, value).

	Parameters:
		name (str) –

	value (Any) –

	Return type:
	None

	
__setitem__(name, value)
		Parameters:
		name (str | pikepdf.objects.Name | int) –

	value (Any) –

	Return type:
	None

	
append(pyitem)
	Append another object to an array; fails if the object is not an array.

	Parameters:
	pyitem (Any) –

	Return type:
	None

	
as_dict()
		Return type:
	_ObjectMapping

	
as_list()
		Return type:
	_ObjectList

	
emplace(other, retain=...)
	Copy all items from other without making a new object.

Particularly when working with pages, it may be desirable to remove all
of the existing page’s contents and emplace (insert) a new page on top
of it, in a way that preserves all links and references to the original
page. (Or similarly, for other Dictionary objects in a PDF.)

Any Dictionary keys in the iterable retain are preserved. By default,
/Parent is retained.

When a page is assigned (pdf.pages[0] = new_page), only the
application knows if references to the original the original page are
still valid. For example, a PDF optimizer might restructure a page
object into another visually similar one, and references would be valid;
but for a program that reorganizes page contents such as a N-up
compositor, references may not be valid anymore.

This method takes precautions to ensure that child objects in common
with self and other are not inadvertently deleted.

Example

>>> pdf = pikepdf.Pdf.open('../tests/resources/fourpages.pdf')
>>> pdf.pages[0].objgen
(3, 0)
>>> pdf.pages[0].emplace(pdf.pages[1])
>>> pdf.pages[0].objgen
(3, 0)
>>> # Same object

Changed in version 2.11.1: Added the retain argument.

	Parameters:
		other (Object) –

	retain (Iterable[pikepdf.objects.Name]) –

	Return type:
	None

	
extend(iter)
	Extend a pikepdf.Array with an iterable of other pikepdf.Object.

	Parameters:
	iter (Iterable[Object]) –

	Return type:
	None

	
get(key, default=...)
	Retrieve an attribute from the object.

Only works if the object is a Dictionary, Array or Stream.

	Parameters:
		key (int | str | pikepdf.objects.Name) –

	default (T | None) –

	Return type:
	Object | T | None

	
get_raw_stream_buffer()
	Return a buffer protocol buffer describing the raw, encoded stream.

	Return type:
	Buffer

	
get_stream_buffer(decode_level=...)
	Return a buffer protocol buffer describing the decoded stream.

	Parameters:
	decode_level (StreamDecodeLevel) –

	Return type:
	Buffer

	
property images
		Return type:
	_ObjectMapping

	
property is_indirect
	Returns True if the object is an indirect object.

	Return type:
	bool

	
is_owned_by(possible_owner)
	Test if this object is owned by the indicated possible_owner.

	Parameters:
	possible_owner (Pdf) –

	Return type:
	bool

	
property is_rectangle
	Returns True if the object is a rectangle (an array of 4 numbers).

	Return type:
	bool

	
items()
		Return type:
	Iterable[tuple[str, Object]]

	
keys()
	Get the keys of the object, if it is a Dictionary or Stream.

	Return type:
	set[str]

	
property objgen
	Return the object-generation number pair for this object.

If this is a direct object, then the returned value is (0, 0).
By definition, if this is an indirect object, it has a “objgen”,
and can be looked up using this in the cross-reference (xref) table.
Direct objects cannot necessarily be looked up.

The generation number is usually 0, except for PDFs that have been
incrementally updated. Incrementally updated PDFs are now uncommon,
since it does not take too long for modern CPUs to reconstruct an
entire PDF. pikepdf will consolidate all incremental updates
when saving.

	Return type:
	tuple[int, int]

	
static parse(stream, description=...)
	Parse PDF binary representation into PDF objects.

	Parameters:
		stream (bytes) –

	description (str) –

	Return type:
	Object

	
read_bytes(decode_level=...)
	Decode and read the content stream associated with this object.

	Parameters:
	decode_level (StreamDecodeLevel) –

	Return type:
	bytes

	
read_raw_bytes()
	Read the content stream associated with a Stream, without decoding.

	Return type:
	bytes

	
same_owner_as(other)
	Test if two objects are owned by the same pikepdf.Pdf.

	Parameters:
	other (Object) –

	Return type:
	bool

	
property stream_dict
	Access the dictionary key-values for a pikepdf.Stream.

	Return type:
	pikepdf.objects.Dictionary

	
to_json(dereference=..., schema_version=...)
	Convert to a QPDF JSON representation of the object.

See the QPDF manual for a description of its JSON representation.
https://qpdf.readthedocs.io/en/stable/json.html#qpdf-json-format

Not necessarily compatible with other PDF-JSON representations that
exist in the wild.

	Names are encoded as UTF-8 strings

	Indirect references are encoded as strings containing obj gen R

		Strings are encoded as UTF-8 strings with unrepresentable binary
	characters encoded as \uHHHH

		Encoding streams just encodes the stream’s dictionary; the stream
	data is not represented

		Object types that are only valid in content streams (inline
	image, operator) as well as “reserved” objects are not
representable and will be serialized as null.

	Parameters:
		dereference (bool) – If True, dereference the object if this is an
indirect object.

	schema_version (int) – The version of the JSON schema. Defaults to 2.

	Returns:
	JSON bytestring of object. The object is UTF-8 encoded
and may be decoded to a Python str that represents the binary
values \x00-\xFF as U+0000 to U+00FF; that is,
it may contain mojibake.

	Return type:
	bytes

Changed in version 6.0: Added schema_version.

	
unparse(resolved=...)
	Convert PDF objects into their binary representation.

Set resolved=True to deference indirect objects where possible.

If you want to unparse content streams, which are a collection of
objects that need special treatment, use
pikepdf.unparse_content_stream() instead.

Returns bytes() that can be used with Object.parse()
to reconstruct the pikepdf.Object. If reconstruction is not possible,
a relative object reference is returned, such as 4 0 R.

	Parameters:
	resolved (bool) – If True, deference indirect objects where possible.

	Return type:
	bytes

	
with_same_owner_as(arg0)
	Returns an object that is owned by the same Pdf that owns other object.

If the objects already have the same owner, this object is returned.
If the other object has a different owner, then a copy is created
that is owned by other’s owner. If this object is a direct object
(no owner), then an indirect object is created that is owned by
other. An exception is thrown if other is a direct object.

This method may be convenient when a reference to the Pdf is not
available.

New in version 2.14.

	Parameters:
	arg0 (Object) –

	Return type:
	Object

	
wrap_in_array()
	Return the object wrapped in an array if not already an array.

	Return type:
	pikepdf.objects.Array

	
write(data, *, filter=..., decode_parms=..., type_check=...)
	Replace stream object’s data with new (possibly compressed) data.

filter and decode_parms describe any compression that is already
present on the input data. For example, if your data is already
compressed with the Deflate algorithm, you would set
filter=Name.FlateDecode.

When writing the PDF in pikepdf.Pdf.save(),
pikepdf may change the compression or apply compression to data that was
not compressed, depending on the parameters given to that function. It
will never change lossless to lossy encoding.

PNG and TIFF images, even if compressed, cannot be directly inserted
into a PDF and displayed as images.

	Parameters:
		data (bytes) – the new data to use for replacement

	filter (pikepdf.objects.Name | pikepdf.objects.Array | list[pikepdf.objects.Name] | None) – The filter(s) with which the
data is (already) encoded

	decode_parms (pikepdf.objects.Dictionary | pikepdf.objects.Array | None) – Parameters for the
filters with which the object is encode

	type_check (bool) – Check arguments; use False only if you want to
intentionally create malformed PDFs.

	Return type:
	None

If only one filter is specified, it may be a name such as
Name(‘/FlateDecode’). If there are multiple filters, then array
of names should be given.

If there is only one filter, decode_parms is a Dictionary of
parameters for that filter. If there are multiple filters, then
decode_parms is an Array of Dictionary, where each array index
is corresponds to the filter.

	
class pikepdf.Name
	Construct a PDF Name object.

Names can be constructed with two notations:

	Name.Resources

	Name('/Resources')

The two are semantically equivalent. The former is preferred for names
that are normally expected to be in a PDF. The latter is preferred for
dynamic names and attributes.

	
__new__(name)
	Construct a PDF Name.

	Parameters:
	name (str | Name) –

	Return type:
	Name

	
classmethod random(len_=16, prefix='')
	Generate a cryptographically strong, random, valid PDF Name.

If you are inserting a new name into a PDF (for example,
name for a new image), you can use this function to generate a
cryptographically strong random name that is almost certainly already
not already in the PDF, and not colliding with other existing names.

This function uses Python’s secrets.token_urlsafe, which returns a
URL-safe encoded random number of the desired length. An optional
prefix may be prepended. (The encoding is ultimately done with
base64.urlsafe_b64encode().) Serendipitously, URL-safe is also
PDF-safe.

When the length parameter is 16 (16 random bytes or 128 bits), the result
is probably globally unique and can be treated as never colliding with
other names.

The length of the returned string may vary because it is encoded,
but will always have 8 * len_ random bits.

	Parameters:
		len – The length of the random string.

	prefix (str) – A prefix to prepend to the random string.

	len_ (int) –

	Return type:
	Name

	
class pikepdf.String
	Construct a PDF String object.

	
__new__(s)
	Construct a PDF String.

	Parameters:
	s (str | bytes) – The string to use. String will be encoded for
PDF, bytes will be constructed without encoding.

	Return type:
	String

	
class pikepdf.Array
	Construct a PDF Array object.

	
__new__(a=None)
	Construct a PDF Array.

	Parameters:
	a (Iterable | pikepdf._core.Rectangle | pikepdf._core.Matrix | None) – An iterable of objects. All objects must be either
pikepdf.Object or convertible to pikepdf.Object.

	Return type:
	Array

	
class pikepdf.Dictionary
	Construct a PDF Dictionary object.

	
__new__(d=None, **kwargs)
	Construct a PDF Dictionary.

Works from either a Python dict or keyword arguments.

These two examples are equivalent:

pikepdf.Dictionary({'/NameOne': 1, '/NameTwo': 'Two'})

pikepdf.Dictionary(NameOne=1, NameTwo='Two')

In either case, the keys must be strings, and the strings
correspond to the desired Names in the PDF Dictionary. The values
must all be convertible to pikepdf.Object.

	Parameters:
	d (Mapping | None) –

	Return type:
	Dictionary

	
class pikepdf.Stream
	Construct a PDF Stream object.

	
__new__(owner, data=None, d=None, **kwargs)
	Create a new stream object.

Streams stores arbitrary binary data and may or may not be compressed.
It also may or may not be a page or Form XObject’s content stream.

A stream dictionary is like a pikepdf.Dictionary or Python dict, except
it has a binary payload of data attached. The dictionary describes
how the data is compressed or encoded.

The dictionary may be initialized just like pikepdf.Dictionary is initialized,
using a mapping object or keyword arguments.

	Parameters:
		owner (pikepdf.Pdf) – The Pdf to which this stream shall be attached.

	data (bytes | None) – The data bytes for the stream.

	d – An optional mapping object that will be used to construct the stream’s
dictionary.

	kwargs – Keyword arguments that will define the stream dictionary. Do not set
/Length here as pikepdf will manage this value. Set /Filter
if the data is already encoded in some format.

	Return type:
	Stream

Examples

	Using kwargs:
	>>> pdf = pikepdf.Pdf.new()
>>> s1 = pikepdf.Stream(
... pdf,
... b"uncompressed image data",
... BitsPerComponent=8,
... ColorSpace=pikepdf.Name.DeviceRGB,
...)

	Using dict:
	>>> pdf = pikepdf.Pdf.new()
>>> d = pikepdf.Dictionary(Key1=1, Key2=2)
>>> s2 = pikepdf.Stream(
... pdf,
... b"data",
... d
...)

Changed in version 2.2: Support creation of pikepdf.Stream from existing dictionary.

Changed in version 3.0: obj argument was removed; use data.

	
class pikepdf.Operator
	Construct an operator for use in a content stream.

An Operator is one of a limited set of commands that can appear in PDF content
streams (roughly the mini-language that draws objects, lines and text on a
virtual PDF canvas). The commands parse_content_stream() and
unparse_content_stream() create and expect Operators respectively, along
with their operands.

pikepdf uses the special Operator “INLINE IMAGE” to denote an inline image
in a content stream.

	
__new__(name)
	Construct an operator.

	Parameters:
	name (str) –

	Return type:
	Operator

Common PDF data structures

	
class pikepdf.Matrix
	A 2D affine matrix for PDF transformations.

PDF uses matrices to transform document coordinates to screen/device
coordinates.

PDF matrices are encoded as pikepdf.Array with exactly
six numeric elements, ordered as a b c d e f.

\[\begin{split}\begin{bmatrix}
a & b & 0 \\
c & d & 0 \\
e & f & 1 \\
\end{bmatrix}\end{split}\]

The approximate interpretation of these six parameters is documented
below. The values (0, 0, 1) in the third column are fixed, so a
general 3×3 matrix cannot be converted to a PDF matrix.

PDF transformation matrices are the transpose of most textbook
treatments. In a textbook, typically A × vc is used to
transform a column vector vc=(x, y, 1) by the affine matrix A.
In PDF, the matrix is the transpose of that in the textbook,
and vr × A' is used to transform a row vector vr=(x, y, 1).

Transformation matrices specify the transformation from the new
(transformed) coordinate system to the original (untransformed)
coordinate system. x’ and y’ are the coordinates in the
untransformed coordinate system, and x and y are the
coordinates in the transformed coordinate system.

PDF order:

\[\begin{split}\begin{equation}
\begin{bmatrix}
x' & y' & 1
\end{bmatrix}
=
\begin{bmatrix}
x & y & 1
\end{bmatrix}
\begin{bmatrix}
a & b & 0 \\
c & d & 0 \\
e & f & 1
\end{bmatrix}
\end{equation}\end{split}\]

To concatenate transformations, use the matrix multiple (@)
operator to pre-multiply the next transformation onto existing
transformations.

Alternatively, use the .translated(), .scaled(), and .rotated()
methods to chain transformation operations.

Addition and other operations are not implemented because they’re not
that meaningful in a PDF context.

Matrix objects are immutable. All transformation methods return
new matrix objects.

New in version 8.7.

	
__array__()
	Convert this matrix to a NumPy array.

If numpy is not installed, this will throw an exception.

	Return type:
	numpy.ndarray

	
__init__()
	

	
__matmul__(other)
	Return the matrix product of two matrices.

Can be used to concatenate transformations. Transformations should be
composed by pre-multiplying matrices. For example, to apply a
scaling transform, one could do:

scale = pikepdf.Matrix(2, 0, 0, 2, 0, 0)
scaled = scale @ matrix

	Parameters:
	other (Matrix) –

	Return type:
	Matrix

	
property a
	a is the horizontal scaling factor.

	Return type:
	float

	
as_array()
	Convert this matrix to a pikepdf.Array.

A Matrix cannot be inserted into a PDF directly. Use this function
to convert a Matrix to a pikepdf.Array, which can be inserted.

	Return type:
	pikepdf.objects.Array

	
property b
	b is horizontal skewing.

	Return type:
	float

	
property c
	c is vertical skewing.

	Return type:
	float

	
property d
	d is the vertical scaling factor.

	Return type:
	float

	
property e
	e is the horizontal translation.

	Return type:
	float

	
encode()
	Encode matrix to bytes suitable for including in a PDF content stream.

	Return type:
	bytes

	
property f
	f is the vertical translation.

	Return type:
	float

	
inverse()
	Return the inverse of the matrix.

The inverse matrix reverses the transformation of the original matrix.

In rare situations, the inverse may not exist. In that case, an
exception is thrown. The PDF will likely have rendering problems.

	Return type:
	Matrix

	
rotated(angle_degrees_ccw)
	Return a rotated copy of this matrix.

Calculates
Matrix(cos(angle), sin(angle), -sin(angle), cos(angle), 0, 0) @ self.

	Parameters:
	angle_degrees_ccw – angle in degrees counterclockwise

	Return type:
	Matrix

	
scaled(sx, sy)
	Return a scaled copy of this matrix.

Calculates Matrix(sx, 0, 0, sy, 0, 0) @ self.

	Parameters:
		sx – horizontal scaling

	sy – vertical scaling

	Return type:
	Matrix

	
property shorthand
	Return the 6-tuple (a,b,c,d,e,f) that describes this matrix.

	Return type:
	tuple[float, float, float, float, float, float]

	
transform(point: tuple[float, float])
	

	
translated(tx, ty)
	Return a translated copy of this matrix.

Calculates Matrix(1, 0, 0, 1, tx, ty) @ self.

	Parameters:
		tx – horizontal translation

	ty – vertical translation

	Return type:
	Matrix

	
class pikepdf.Rectangle(llx: float, lly: float, urx: float, ury: float, /)
	A PDF rectangle.

Typically this will be a rectangle in PDF units (points, 1/72”).
Unlike raster graphics, the rectangle is defined by the lower
left and upper right points.

Rectangles in PDF are encoded as pikepdf.Array with exactly
four numeric elements, ordered as llx lly urx ury.
See PDF 1.7 Reference Manual section 7.9.5.

The rectangle may be considered degenerate if the lower left corner
is not strictly less than the upper right corner.

New in version 2.14.

Changed in version 8.5: Added operators to test whether rectangle a is contained in
rectangle b (a <= b) and to calculate their intersection
(a & b).

	
__and__(other)
	Return the bounding Rectangle of the common area of self and other.

	Parameters:
	other (Rectangle) –

	Return type:
	Rectangle

	
__init__(llx: float, lly: float, urx: float, ury: float, /)
	Construct a new rectangle.

	
as_array()
	Returns this rectangle as a pikepdf.Array.

	Return type:
	pikepdf.objects.Array

	
property height
	The height of the rectangle.

	Return type:
	float

	
llx = Ellipsis
	The lower left corner on the x-axis.

	
lly = Ellipsis
	The lower left corner on the y-axis.

	
property lower_left
	A point for the lower left corner.

	Return type:
	tuple[float, float]

	
property lower_right
	A point for the lower right corner.

	Return type:
	tuple[float, float]

	
property upper_left
	A point for the upper left corner.

	Return type:
	tuple[float, float]

	
property upper_right
	A point for the upper right corner.

	Return type:
	tuple[float, float]

	
urx = Ellipsis
	The upper right corner on the x-axis.

	
ury = Ellipsis
	The upper right corner on the y-axis.

	
property width
	The width of the rectangle.

	Return type:
	float

Content stream elements

	
class pikepdf.ContentStreamInstruction(operands: _ObjectList, operator: pikepdf.objects.Operator)
	Represents one complete instruction inside a content stream.

	
property operands
		Return type:
	_ObjectList

	
property operator
		Return type:
	pikepdf.objects.Operator

	
class pikepdf.ContentStreamInlineImage
	Represents an instruction to draw an inline image.

pikepdf consolidates the BI-ID-EI sequence of operators, as appears in a PDF to
declare an inline image, and replaces them with a single virtual content stream
instruction with the operator “INLINE IMAGE”.

	
property iimage
		Return type:
	pikepdf.models.image.PdfInlineImage

	
property operands
		Return type:
	_ObjectList

	
property operator
		Return type:
	pikepdf.objects.Operator

Internal objects

These objects are returned by other pikepdf objects. They are part of the API,
but not intended to be created explicitly.

	
class pikepdf._core.PageList
	For accessing pages in a PDF.

A list-like object enumerating a range of pages in a pikepdf.Pdf.
It may be all of the pages or a subset. Obtain using pikepdf.Pdf.pages.

See pikepdf.Page for accessing individual pages.

	
append(page)
	Add another page to the end.

While this method copies pages from one document to another, it does not
copy certain metadata such as annotations, form fields, bookmarks or
structural tree elements. Copying these is a more complex, application
specific operation.

	Parameters:
	page (Page) –

	Return type:
	None

	
extend(other)
	Extend the Pdf by adding pages from an iterable of pages.

While this method copies pages from one document to another, it does not
copy certain metadata such as annotations, form fields, bookmarks or
structural tree elements. Copying these is a more complex, application
specific operation.

	Parameters:
	other (PageList | Iterable[Page]) –

	
from_objgen(objgen: tuple[int, int])
	Given an objgen (object ID, generation), return the page.

Raises an exception if no page matches.

	
index(page)
	Given a page, find the index.

That is, returns n such that pdf.pages[n] == this_page.
A ValueError exception is thrown if the page does not belong to
to this Pdf. The first page has index 0.

	Parameters:
	page (Page) –

	Return type:
	int

	
insert(index, obj)
	Insert a page at the specified location.

	Parameters:
		index (int) – location at which to insert page, 0-based indexing

	obj (Page) – page object to insert

	Return type:
	None

	
p(pnum)
	Look up page number in ordinal numbering, where 1 is the first page.

This is provided for convenience in situations where ordinal numbering
is more natural. It is equivalent to .pages[pnum - 1]. .p(0)
is an error and negative indexing is not supported.

If the PDF defines custom page labels (such as labeling front matter
with Roman numerals and the main body with Arabic numerals), this
function does not account for that. Use pikepdf.Page.label
to get the page label for a page.

	Parameters:
	pnum (int) –

	Return type:
	Page

	
remove(page=None, *, p)
	Remove a page.

	Parameters:
		page (Page | None) – If page is not None, remove that page.

	p (int) – 1-based page number to remove, if page is None.

	Return type:
	None

	
reverse()
	Reverse the order of pages.

	Return type:
	None

	
class pikepdf._core._ObjectList
	A list whose elements are always pikepdf.Object.

In all other respects, this object behaves like a standard Python
list.

	
append(x)
		Parameters:
	x (Object) –

	Return type:
	None

	
clear()
		Return type:
	None

	
count(x)
		Parameters:
	x (Object) –

	Return type:
	int

	
extend(L: _ObjectList)
	

	
insert(i, x)
		Parameters:
		i (int) –

	x (Object) –

	Return type:
	None

	
pop()
	

	
remove(x)
		Parameters:
	x (Object) –

	Return type:
	None

	
class pikepdf.ObjectType(*args, **kwds)
	Enumeration of PDF object types.

These values are used to implement
pikepdf’s instance type checking. In the vast majority of cases it is more
pythonic to use isinstance(obj, pikepdf.Stream) or issubclass.

These values are low-level and documented for completeness. They are exposed
through pikepdf.Object._type_code.

	
array = Ellipsis
	A PDF array, meaning the object is a pikepdf.Array.

	
boolean = Ellipsis
	A PDF boolean. In most cases, booleans are automatically converted to
bool, so this should not appear.

	
dictionary = Ellipsis
	A PDF dictionary, meaning the object is a pikepdf.Dictionary.

	
inlineimage = Ellipsis
	A PDF inline image, meaning the object is the data stream of an inline
image. It would be necessary to combine this with the implicit
dictionary to interpret the image correctly. pikepdf automatically
packages inline images into a more useful class, so this will not
generally appear.

	
integer = Ellipsis
	A PDF integer. In most cases, integers are automatically converted to
int, so this should not appear. Unlike Python integers, PDF integers
are 32-bit signed integers.

	
name_ = Ellipsis
	A PDF name, meaning the object is a pikepdf.Name.

	
null = Ellipsis
	A PDF null. In most cases, nulls are automatically converted to None,
so this should not appear.

	
operator = Ellipsis
	A PDF operator, meaning the object is a pikepdf.Operator.

	
real = Ellipsis
	A PDF real. In most cases, reals are automatically convert to
decimal.Decimal.

	
reserved = Ellipsis
	A temporary object used in creating circular references. Should not appear
in most cases.

	
stream = Ellipsis
	A PDF stream, meaning the object is a pikepdf.Stream (and it also
has a dictionary).

	
string = Ellipsis
	A PDF string, meaning the object is a pikepdf.String.

	
uninitialized = Ellipsis
	An uninitialized object. If this appears, it is probably a bug.

Jobs

	
class pikepdf.Job(json: str)
	Provides access to the QPDF job interface.

All of the functionality of the qpdf command line program
is now available to pikepdf through jobs.

	For further details:
	https://qpdf.readthedocs.io/en/stable/qpdf-job.html

	
EXIT_CORRECT_PASSWORD = 3
	

	
EXIT_ERROR = 2
	Exit code for a job that had an error.

	
EXIT_IS_NOT_ENCRYPTED = 2
	Exit code for a job that provide a password when the input was not encrypted.

	
EXIT_WARNING = 3
	Exit code for a job that had a warning.

	
LATEST_JOB_JSON
	Version number of the most recent job-JSON schema.

	
LATEST_JSON
	Version number of the most recent QPDF-JSON schema.

	
__init__(json: str)
	Create a Job from command line arguments to the qpdf program.

The first item in the args list should be equal to progname,
whose default is "pikepdf".

Example

job = Job([‘pikepdf’, ‘–check’, ‘input.pdf’])
job.run()

	
check_configuration()
	Checks if the configuration is valid; raises an exception if not.

	Return type:
	None

	
create_pdf()
	Executes the first stage of the job.

	
property creates_output
	Returns True if the Job will create some sort of output file.

	Return type:
	bool

	
property encryption_status
	Returns a Python dictionary describing the encryption status.

	Return type:
	dict[str, bool]

	
property exit_code
	After run(), returns an integer exit code.

The meaning of exit code depends on the details of the Job that was run.
Details are subject to change in libqpdf. Use properties has_warnings
and encryption_status instead.

	Return type:
	int

	
property has_warnings
	After run(), returns True if there were warnings.

	Return type:
	bool

	
static job_json_schema(*, schema)
	For reference, the QPDF job command line schema is built-in.

	Parameters:
	schema (int) –

	Return type:
	str

	
static json_out_schema(*, schema)
	For reference, the QPDF JSON output schema is built-in.

	Parameters:
	schema (int) –

	Return type:
	str

	
property message_prefix
	Allows manipulation of the prefix in front of all output messages.

	Return type:
	str

	
run()
	Executes the job.

	Return type:
	None

	
write_pdf(pdf)
	Executes the second stage of the job.

	Parameters:
	pdf (Pdf) –

 Previous
 Next

 © Copyright 2023, James R. Barlow.
 Revision 3b7f6141.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

