

 pikepdf

 latest

 Introduction

	Installation
	Tutorial

Release notes

	Release notes

Topics

	PDF split, merge, and document assembly
	Working with pages
	Object model
	Stream objects
	Working with content streams
	Working with images
	Overlays, underlays, watermarks, n-up
	Character encoding
	Metadata
	Outlines
	Name trees
	Attaching files to a PDF
	Default appearance in PDF viewers
	PDF security

API

	Main objects
	Support models	ObjectHelper	ObjectHelper.obj

	Page	Page.add_content_token_filter()
	Page.add_overlay()
	Page.add_resource()
	Page.add_underlay()
	Page.artbox
	Page.as_form_xobject()
	Page.bleedbox
	Page.calc_form_xobject_placement()
	Page.contents_add()
	Page.contents_coalesce()
	Page.cropbox
	Page.emplace()
	Page.externalize_inline_images()
	Page.form_xobjects()
	Page.get()
	Page.get_filtered_contents()
	Page.images
	Page.index()
	Page.label()
	Page.mediabox
	Page.obj
	Page.parse_contents()
	Page.remove_unreferenced_resources()
	Page.resources
	Page.rotate()
	Page.trimbox

	PdfMatrix	PdfMatrix.__array__()
	PdfMatrix.__init__()
	PdfMatrix.__matmul__()
	PdfMatrix.a
	PdfMatrix.b
	PdfMatrix.c
	PdfMatrix.d
	PdfMatrix.e
	PdfMatrix.encode()
	PdfMatrix.f
	PdfMatrix.identity()
	PdfMatrix.inverse()
	PdfMatrix.rotated()
	PdfMatrix.scaled()
	PdfMatrix.shorthand
	PdfMatrix.translated()

	PdfImage	PdfImage.MAIN_COLORSPACES
	PdfImage.PRINT_COLORSPACES
	PdfImage.SIMPLE_COLORSPACES
	PdfImage.as_pil_image()
	PdfImage.bits_per_component
	PdfImage.colorspace
	PdfImage.decode_parms
	PdfImage.extract_to()
	PdfImage.filter_decodeparms
	PdfImage.filters
	PdfImage.get_stream_buffer()
	PdfImage.height
	PdfImage.icc
	PdfImage.image_mask
	PdfImage.indexed
	PdfImage.is_device_n
	PdfImage.is_separation
	PdfImage.mode
	PdfImage.obj
	PdfImage.palette
	PdfImage.read_bytes()
	PdfImage.show()
	PdfImage.size
	PdfImage.width

	PdfInlineImage
	PdfMetadata	PdfMetadata.DOCINFO_MAPPING
	PdfMetadata.NS
	PdfMetadata.REVERSE_NS
	PdfMetadata.load_from_docinfo()
	PdfMetadata.pdfa_status
	PdfMetadata.pdfx_status
	PdfMetadata.register_xml_namespace()

	Encryption	Encryption.R
	Encryption.aes
	Encryption.allow
	Encryption.metadata
	Encryption.owner
	Encryption.user

	Outline	Outline.add()
	Outline.root

	OutlineItem	OutlineItem.from_dictionary_object()
	OutlineItem.to_dictionary_object()

	Permissions	Permissions.accessibility
	Permissions.extract
	Permissions.modify_annotation
	Permissions.modify_assembly
	Permissions.modify_form
	Permissions.modify_other
	Permissions.print_highres
	Permissions.print_lowres

	EncryptionInfo	EncryptionInfo.P
	EncryptionInfo.R
	EncryptionInfo.V
	EncryptionInfo.bits
	EncryptionInfo.encryption_key
	EncryptionInfo.file_method
	EncryptionInfo.stream_method
	EncryptionInfo.string_method
	EncryptionInfo.user_password

	Annotation	Annotation.appearance_dict
	Annotation.appearance_state
	Annotation.flags
	Annotation.get_appearance_stream()
	Annotation.get_page_content_for_appearance()
	Annotation.obj
	Annotation.subtype

	Attachments
	AttachedFileSpec	AttachedFileSpec.__init__()
	AttachedFileSpec.description
	AttachedFileSpec.filename
	AttachedFileSpec.from_filepath()
	AttachedFileSpec.get_all_filenames()
	AttachedFileSpec.get_file()
	AttachedFileSpec.obj
	AttachedFileSpec.relationship

	AttachedFile	AttachedFile.creation_date
	AttachedFile.md5
	AttachedFile.mime_type
	AttachedFile.mod_date
	AttachedFile.obj
	AttachedFile.read_bytes()
	AttachedFile.size

	NameTree	NameTree.new()
	NameTree.obj

	NumberTree	NumberTree.new()
	NumberTree.obj

	Content streams
	Exceptions
	Settings

Reference

	Architecture
	Build process notes
	Contributing guidelines
	Debugging
	Resources

 pikepdf

 	
	Support models
	
 Edit on GitHub

Support models

Support models are abstracts over “raw” objects within a Pdf. For example, a page
in a PDF is a Dictionary with set to /Type of /Page. The Dictionary in
that case is the “raw” object. Upon establishing what type of object it is, we
can wrap it with a support model that adds features to ensure consistency with
the PDF specification.

In version 2.x, did not apply support models to “raw” objects automatically.
Version 3.x automatically applies support models to /Page objects.

	
class pikepdf.ObjectHelper
	Base class for wrapper/helper around an Object.

Used to expose additional functionality specific to that object type.

pikepdf.Page is an example of an object helper. The actual
page object is a PDF is a Dictionary. The helper provides additional
methods specific to pages.

	
property obj
	Get the underlying PDF object (typically a Dictionary).

	Return type:
	pikepdf.objects.Dictionary

	
class pikepdf.Page(arg0: Object)
	Support model wrapper around a page dictionary object.

	
add_content_token_filter(tf)
	Attach a pikepdf.TokenFilter to a page’s content stream.

This function applies token filters lazily, if/when the page’s
content stream is read for any reason, such as when the PDF is
saved. If never access, the token filter is not applied.

Multiple token filters may be added to a page/content stream.

Token filters may not be removed after being attached to a Pdf.
Close and reopen the Pdf to remove token filters.

If the page’s contents is an array of streams, it is coalesced.

	Parameters:
	tf (TokenFilter) – The token filter to attach.

	Return type:
	None

	
add_overlay(other, rect, *, push_stack=...)
	Overlay another object on this page.

Overlays will be drawn after all previous content, potentially drawing on top
of existing content.

	Parameters:
		other (Object | Page) – A Page or Form XObject to render as an overlay on top of this
page.

	rect (Rectangle | None) – The PDF rectangle (in PDF units) in which to draw the overlay.
If omitted, this page’s trimbox, cropbox or mediabox (in that order)
will be used.

	push_stack (bool | None) – If True (default), push the graphics stack of the existing
content stream to ensure that the overlay is rendered correctly.
Officially PDF limits the graphics stack depth to 32. Most
viewers will tolerate more, but excessive pushes may cause problems.
Multiple content streams may also be coalesced into a single content
stream where this parameter is True, since the PDF specification
permits PDF writers to coalesce streams as they see fit.

	shrink – If True (default), allow the object to shrink to fit inside the
rectangle. The aspect ratio will be preserved.

	expand – If True (default), allow the object to expand to fit inside the
rectangle. The aspect ratio will be preserved.

	Returns:
	The name of the Form XObject that contains the overlay.

New in version 2.14.

Changed in version 4.0.0: Added the push_stack parameter. Previously, this method behaved
as if push_stack were False.

Changed in version 4.2.0: Added the shrink and expand parameters. Previously, this method
behaved as if shrink=True, expand=False.

Changed in version 4.3.0: Returns the name of the overlay in the resources dictionary instead
of returning None.

	
add_resource(res, res_type, name=None, *, prefix='', replace_existing=True)
	Add a new resource to the page’s Resources dictionary.

If the Resources dictionaries do not exist, they will be created.

	Parameters:
		self – The object to add to the resources dictionary.

	res (Object) – The dictionary object to insert into the resources
dictionary.

	res_type (pikepdf.objects.Name) – Should be one of the following Resource dictionary types:
ExtGState, ColorSpace, Pattern, Shading, XObject, Font, Properties.

	name (pikepdf.objects.Name | None) – The name of the object. If omitted, a random name will be
generated with enough randomness to be globally unique.

	prefix (str) – A prefix for the name of the object. Allows conveniently
namespacing when using random names, e.g. prefix=”Im” for images.
Mutually exclusive with name parameter.

	replace_existing (bool) – If the name already exists in one of the resource
dictionaries, remove it.

	Return type:
	pikepdf.objects.Name

Example

>>> pdf = pikepdf.Pdf.new()
>>> pdf.add_blank_page(page_size=(100, 100))
<pikepdf.Page({
 "/Contents": pikepdf.Stream(owner=<...>, data=<...>, {

 }),
 "/MediaBox": [0, 0, 100, 100],
 "/Parent": <reference to /Pages>,
 "/Resources": {

 },
 "/Type": "/Page"
})>
>>> formxobj = pikepdf.Dictionary(
... Type=Name.XObject,
... Subtype=Name.Form
...)
>>> resource_name = pdf.pages[0].add_resource(formxobj, Name.XObject)

New in version 2.3.

Changed in version 2.14: If res does not belong to the same Pdf that owns this page,
a copy of res is automatically created and added instead. In previous
versions, it was necessary to change for this case manually.

Changed in version 4.3.0: Returns the name of the overlay in the resources dictionary instead
of returning None.

	
add_underlay(other, rect)
	Underlay another object beneath this page.

Underlays will be drawn before all other content, so they may be overdrawn
partially or completely.

There is no push_stack parameter for this function, since adding an
underlay can be done without manipulating the graphics stack.

	Parameters:
		other (Object | Page) – A Page or Form XObject to render as an underlay underneath this
page.

	rect (Rectangle | None) – The PDF rectangle (in PDF units) in which to draw the underlay.
If omitted, this page’s trimbox, cropbox or mediabox (in that order)
will be used.

	shrink – If True (default), allow the object to shrink to fit inside the
rectangle. The aspect ratio will be preserved.

	expand – If True (default), allow the object to expand to fit inside the
rectangle. The aspect ratio will be preserved.

	Returns:
	The name of the Form XObject that contains the underlay.

New in version 2.14.

Changed in version 4.2.0: Added the shrink and expand parameters. Previously, this method
behaved as if shrink=True, expand=False. Fixed issue with wrong
page rect being selected.

	
property artbox
	Return page’s effective /ArtBox, in PDF units.

According to the PDF specification:
“The art box defines the page’s meaningful content area, including
white space.”

If the /ArtBox is not defined, the /CropBox is returned.

	Return type:
	pikepdf.objects.Array

	
as_form_xobject(handle_transformations=...)
	Return a form XObject that draws this page.

This is useful for
n-up operations, underlay, overlay, thumbnail generation, or
any other case in which it is useful to replicate the contents
of a page in some other context. The dictionaries are shallow
copies of the original page dictionary, and the contents are
coalesced from the page’s contents. The resulting object handle
is not referenced anywhere.

	Parameters:
	handle_transformations (bool) – If True (default), the resulting form
XObject’s /Matrix will be set to replicate rotation
(/Rotate) and scaling (/UserUnit) in the page’s
dictionary. In this way, the page’s transformations will
be preserved when placing this object on another page.

	Return type:
	Object

	
property bleedbox
	Return page’s effective /BleedBox, in PDF units.

According to the PDF specification:
“The bleed box defines the region to which the contents of the page
should be clipped when output in a print production environment.”

If the /BleedBox is not defined, the /CropBox is returned.

	Return type:
	pikepdf.objects.Array

	
calc_form_xobject_placement(formx, name, rect, *, invert_transformations, allow_shrink, allow_expand)
	Generate content stream segment to place a Form XObject on this page.

The content stream segment must then be added to the page’s
content stream.

The default keyword parameters will preserve the aspect ratio.

	Parameters:
		formx (Object) – The Form XObject to place.

	name (pikepdf.objects.Name) – The name of the Form XObject in this page’s /Resources
dictionary.

	rect (Rectangle) – Rectangle describing the desired placement of the Form
XObject.

	invert_transformations (bool) – Apply /Rotate and /UserUnit scaling
when determining FormX Object placement.

	allow_shrink (bool) – Allow the Form XObject to take less than the
full dimensions of rect.

	allow_expand (bool) – Expand the Form XObject to occupy all of rect.

	Return type:
	bytes

New in version 2.14.

	
contents_add(contents, *, prepend=...)
	Append or prepend to an existing page’s content stream.

	Parameters:
		contents (pikepdf.objects.Stream | bytes) – An existing content stream to append or prepend.

	prepend (bool) – Prepend if true, append if false (default).

	Return type:
	None

New in version 2.14.

	
contents_coalesce()
	Coalesce a page’s content streams.

A page’s content may be a
stream or an array of streams. If this page’s content is an
array, concatenate the streams into a single stream. This can
be useful when working with files that split content streams in
arbitrary spots, such as in the middle of a token, as that can
confuse some software.

	Return type:
	None

	
property cropbox
	Return page’s effective /CropBox, in PDF units.

According to the PDF specification:
“The crop box defines the region to which the contents of the page
shall be clipped (cropped) when displayed or printed. It has no
defined meaning in the context of the PDF imaging model; it merely
imposes clipping on the page contents.”

If the /CropBox is not defined, the /MediaBox is returned.

	Return type:
	pikepdf.objects.Array

	
emplace(other, retain=...)
		Parameters:
		other (Page) –

	retain (Iterable[pikepdf.objects.Name]) –

	Return type:
	None

	
externalize_inline_images(min_size=..., shallow=...)
	Convert inline image to normal (external) images.

	Parameters:
		min_size (int) – minimum size in bytes

	shallow (bool) – If False, recurse into nested Form XObjects.
If True, do not recurse.

	Return type:
	None

	
form_xobjects()
	Return all Form XObjects associated with this page.

This method does not recurse into nested Form XObjects.

New in version 7.0.0.

	Return type:
	_ObjectMapping

	
get(key, default=...)
		Parameters:
		key (str | pikepdf.objects.Name) –

	default (T | None) –

	Return type:
	T | None | Object

	
get_filtered_contents(tf)
	Apply a pikepdf.TokenFilter to a content stream.

This may be used when the results of a token filter do not need
to be applied, such as when filtering is being used to retrieve
information rather than edit the content stream.

Note that it is possible to create a subclassed TokenFilter
that saves information of interest to its object attributes; it
is not necessary to return data in the content stream.

To modify the content stream, use pikepdf.Page.add_content_token_filter().

	Returns:
	The result of modifying the content stream with tf.
The existing content stream is not modified.

	Parameters:
	tf (TokenFilter) –

	Return type:
	bytes

	
property images
	Return all regular images associated with this page.

This method does not search for Form XObjects that contain images,
and does not attempt to find inline images.

	Return type:
	_ObjectMapping

	
index()
	Returns the zero-based index of this page in the pages list.

That is, returns n such that pdf.pages[n] == this_page.
A ValueError exception is thrown if the page is not attached
to this Pdf.

New in version 2.2.

	Return type:
	int

	
label()
	Returns the page label for this page, accounting for section numbers.

For example, if the PDF defines a preface with lower case Roman
numerals (i, ii, iii…), followed by standard numbers, followed
by an appendix (A-1, A-2, …), this function returns the appropriate
label as a string.

It is possible for a PDF to define page labels such that multiple
pages have the same labels. Labels are not guaranteed to
be unique.

New in version 2.2.

Changed in version 2.9: Returns the ordinary page number if no special rules for page
numbers are defined.

	Return type:
	str

	
property mediabox
	Return page’s /MediaBox, in PDF units.

According to the PDF specification:
“The media box defines the boundaries of the physical medium on which
the page is to be printed.”

	Return type:
	pikepdf.objects.Array

	
property obj
		Return type:
	pikepdf.objects.Dictionary

	
parse_contents(stream_parser)
	Parse a page’s content streams using a pikepdf.StreamParser.

The content stream may be interpreted by the StreamParser but is
not altered.

If the page’s contents is an array of streams, it is coalesced.

	Parameters:
	stream_parser (StreamParser) – A pikepdf.StreamParser instance.

	Return type:
	None

	
remove_unreferenced_resources()
	Removes resources not referenced by content stream.

A page’s resources (page.resources) dictionary maps names to objects.
This method walks through a page’s contents and
keeps tracks of which resources are referenced somewhere in the
contents. Then it removes from the resources dictionary any
object that is not referenced in the contents. This
method is used by page splitting code to avoid copying unused
objects in files that use shared resource dictionaries across
multiple pages.

	Return type:
	None

	
property resources
	Return this page’s resources dictionary.

Changed in version 7.0.0: If the resources dictionary does not exist, an empty one will be created.
A TypeError is raised if a page has a /Resources key but it is not a
dictionary.

	Return type:
	pikepdf.objects.Dictionary

	
rotate(angle, relative)
	Rotate a page.

If relative is False, set the rotation of the
page to angle. Otherwise, add angle to the rotation of the
page. angle must be a multiple of 90. Adding 90 to
the rotation rotates clockwise by 90 degrees.

	Parameters:
		angle (int) – Rotation angle in degrees.

	relative (bool) – If True, add angle to the current
rotation. If False, set the rotation of the page
to angle.

	Return type:
	None

	
property trimbox
	Return page’s effective /TrimBox, in PDF units.

According to the PDF specification:
“The trim box defines the intended dimensions of the finished page
after trimming. It may be smaller than the media box to allow for
production-related content, such as printing instructions, cut marks,
or color bars.”

If the /TrimBox is not defined, the /CropBox is returned (and if
/CropBox is not defined, /MediaBox is returned).

	Return type:
	pikepdf.objects.Array

	
class pikepdf.PdfMatrix(*args)
	Support class for PDF content stream matrices.

PDF content stream matrices are 3x3 matrices summarized by a shorthand
(a, b, c, d, e, f), where the first column vector is (a, c, e)
and the second column vector is (b, d, f). The final column vector
is always (0, 0, 1) since PDF uses
homogenous coordinates.

a is the horizontal scaling factor.
b is horizontal skewing.
c is vertical skewing.
d is the vertical scaling factor.
e is the horizontal translation.
f is the vertical translation.

For scaling, a and d are the scaling factors in the horizontal and vertical
directions, respectively; for pure scaling, b and c are zero.

PDF uses row vectors. That is, vr @ A' gives the effect of transforming
a row vector vr=(x, y, 1) by the matrix A'. Most textbook
treatments use A @ vc where the column vector vc=(x, y, 1)'.

Matrices should be premultipled with other matrices to concatenate
transformations.

(@ is the Python matrix multiplication operator.)

Addition and other operations are not implemented because they’re not that
meaningful in a PDF context (they can be defined and are mathematically
meaningful in general).

PdfMatrix objects are immutable. All transformations on them produce a new
matrix.

Deprecated since version 8.7: Use pikepdf.Matrix instead.

	
__array__()
	Return a numpy array of the matrix.

This function requires numpy, which is an optional dependency of pikepdf.
If numpy is not installed, an ImportError will be raised.

	
__init__(*args)
	Initialize a PdfMatrix.

	
__matmul__(other)
	Multiply this matrix by another matrix.

Can be used to concatenate transformations. Transformations should be composed
by pre-multiplying matrices.

	
property a
	Return the horizontal scaling factor.

	
property b
	Return horizontal skew.

	
property c
	Return vertical skew.

	
property d
	Return the vertical scaling factor.

	
property e
	Return the horizontal translation.

Typically corresponds to translation on the x-axis.

	
encode()
	Encode this matrix in binary suitable for including in a PDF.

	
property f
	Return the vertical translation.

Typically corresponds to translation on the y-axis.

	
static identity()
	Return an identity matrix.

	
inverse()
	Return the inverse of this matrix.

The inverse matrix reverses the transformation of the original matrix.

This function requires numpy, which is an optional dependency of pikepdf.
If numpy is not installed, an ImportError will be raised.

	
rotated(angle_degrees_ccw)
	Concatenate a rotation matrix to this matrix.

Warning

This function is subtly incorrect, because it post-multiplies by the
scaling matrix instead of pre-multiplying. It is assumed that any users
of the code may have noticed this and corrected it by compensating
for it, so correcting the error would be a breaking change.

	
scaled(x, y)
	Concatenate a scaling matrix to this matrix.

Warning

This function is subtly incorrect, because it post-multiplies by the
scaling matrix instead of pre-multiplying. It is assumed that any users
of the code may have noticed this and corrected it by compensating
for it, so correcting the error would be a breaking change.

	
property shorthand
	Return the 6-tuple (a,b,c,d,e,f) that describes this matrix.

	
translated(x, y)
	Translate this matrix.

Warning

This function is subtly incorrect, because it post-multiplies by the
scaling matrix instead of pre-multiplying. It is assumed that any users
of the code may have noticed this and corrected it by compensating
for it, so correcting the error would be a breaking change.

	
class pikepdf.PdfImage(obj)
	Support class to provide a consistent API for manipulating PDF images.

The data structure for images inside PDFs is irregular and complex,
making it difficult to use without introducing errors for less
typical cases. This class addresses these difficulties by providing a
regular, Pythonic API similar in spirit (and convertible to) the Python
Pillow imaging library.

	Parameters:
	obj (pikepdf.objects.Stream) –

	
MAIN_COLORSPACES
	

	
PRINT_COLORSPACES
	

	
SIMPLE_COLORSPACES
	

	
as_pil_image()
	Extract the image as a Pillow Image, using decompression as necessary.

Caller must close the image.

	Return type:
	PIL.Image.Image

	
property bits_per_component
	Bits per component of this image.

	Return type:
	int

	
property colorspace
	PDF name of the colorspace that best describes this image.

	Return type:
	str | None

	
property decode_parms
	List of the /DecodeParms, arguments to filters.

	
extract_to(*, stream=None, fileprefix='')
	Extract the image directly to a usable image file.

If possible, the compressed data is extracted and inserted into
a compressed image file format without transcoding the compressed
content. If this is not possible, the data will be decompressed
and extracted to an appropriate format.

Because it is not known until attempted what image format will be
extracted, users should not assume what format they are getting back.
When saving the image to a file, use a temporary filename, and then
rename the file to its final name based on the returned file extension.

Images might be saved as any of .png, .jpg, or .tiff.

Examples

>>> im.extract_to(stream=bytes_io)
'.png'

>>> im.extract_to(fileprefix='/tmp/image00')
'/tmp/image00.jpg'

	Parameters:
		stream (BinaryIO | None) – Writable stream to write data to.

	fileprefix (str or Path) – The path to write the extracted image to,
without the file extension.

	Returns:
	If fileprefix was provided, then the fileprefix with the
appropriate extension. If no fileprefix, then an extension
indicating the file type.

	Return type:
	str

	
property filter_decodeparms
	Return normalized the Filter and DecodeParms data.

PDF has a lot of possible data structures concerning /Filter and
/DecodeParms. /Filter can be absent or a name or an array, /DecodeParms
can be absent or a dictionary (if /Filter is a name) or an array (if
/Filter is an array). When both are arrays the lengths match.

Normalize this into:
[(/FilterName, {/DecodeParmName: Value, …}), …]

The order of /Filter matters as indicates the encoding/decoding sequence.

	
property filters
	List of names of the filters that we applied to encode this image.

	
get_stream_buffer(decode_level=StreamDecodeLevel.specialized)
	Access this image with the buffer protocol.

	Parameters:
	decode_level (pikepdf._core.StreamDecodeLevel) –

	Return type:
	pikepdf._core.Buffer

	
property height
	Height of the image data in pixels.

	Return type:
	int

	
property icc
	If an ICC profile is attached, return a Pillow object that describe it.

Most of the information may be found in icc.profile.

	Return type:
	PIL.ImageCms.ImageCmsProfile | None

	
property image_mask
	Return True if this is an image mask.

	Return type:
	bool

	
property indexed
	Check if the image has a defined color palette.

	Return type:
	bool

	
property is_device_n
	Check if image has a /DeviceN (complex printing) colorspace.

	Return type:
	bool

	
property is_separation
	Check if image has a /DeviceN (complex printing) colorspace.

	Return type:
	bool

	
property mode
	PIL.Image.mode equivalent for this image, where possible.

If an ICC profile is attached to the image, we still attempt to resolve a Pillow
mode.

	Return type:
	str

	
obj
	

	
property palette
	Retrieve the color palette for this image if applicable.

	Return type:
	PaletteData | None

	
read_bytes(decode_level=StreamDecodeLevel.specialized)
	Decompress this image and return it as unencoded bytes.

	Parameters:
	decode_level (pikepdf._core.StreamDecodeLevel) –

	Return type:
	bytes

	
show()
	Show the image however PIL wants to.

	
property size
	Size of image as (width, height).

	Return type:
	tuple[int, int]

	
property width
	Width of the image data in pixels.

	Return type:
	int

	
class pikepdf.PdfInlineImage(*, image_data, image_object)
	Support class for PDF inline images.

	Parameters:
		image_data (pikepdf.objects.Object) –

	image_object (tuple) –

	
class pikepdf.models.PdfMetadata(pdf, pikepdf_mark=True, sync_docinfo=True, overwrite_invalid_xml=True)
	Read and edit the metadata associated with a PDF.

The PDF specification contain two types of metadata, the newer XMP
(Extensible Metadata Platform, XML-based) and older DocumentInformation
dictionary. The PDF 2.0 specification removes the DocumentInformation
dictionary.

This primarily works with XMP metadata, but includes methods to generate
XMP from DocumentInformation and will also coordinate updates to
DocumentInformation so that the two are kept consistent.

XMP metadata fields may be accessed using the full XML namespace URI or
the short name. For example metadata['dc:description']
and metadata['{http://purl.org/dc/elements/1.1/}description']
both refer to the same field. Several common XML namespaces are registered
automatically.

See the XMP specification for details of allowable fields.

To update metadata, use a with block.

Example

>>> with pdf.open_metadata() as records:
... records['dc:title'] = 'New Title'

See also

pikepdf.Pdf.open_metadata()

	Parameters:
		pdf (pikepdf.Pdf) –

	pikepdf_mark (bool) –

	sync_docinfo (bool) –

	overwrite_invalid_xml (bool) –

	
DOCINFO_MAPPING
	

	
NS
	

	
REVERSE_NS
	

	
load_from_docinfo(docinfo, delete_missing=False, raise_failure=False)
	Populate the XMP metadata object with DocumentInfo.

	Parameters:
		docinfo – a DocumentInfo, e.g pdf.docinfo

	delete_missing (bool) – if the entry is not DocumentInfo, delete the equivalent
from XMP

	raise_failure (bool) – if True, raise any failure to convert docinfo;
otherwise warn and continue

	Return type:
	None

A few entries in the deprecated DocumentInfo dictionary are considered
approximately equivalent to certain XMP records. This method copies
those entries into the XMP metadata.

	
property pdfa_status
	Return the PDF/A conformance level claimed by this PDF, or False.

A PDF may claim to PDF/A compliant without this being true. Use an
independent verifier such as veraPDF to test if a PDF is truly
conformant.

	Returns:
	The conformance level of the PDF/A, or an empty string if the
PDF does not claim PDF/A conformance. Possible valid values
are: 1A, 1B, 2A, 2B, 2U, 3A, 3B, 3U.

	Return type:
	str

	
property pdfx_status
	Return the PDF/X conformance level claimed by this PDF, or False.

A PDF may claim to PDF/X compliant without this being true. Use an
independent verifier such as veraPDF to test if a PDF is truly
conformant.

	Returns:
	The conformance level of the PDF/X, or an empty string if the
PDF does not claim PDF/X conformance.

	Return type:
	str

	
classmethod register_xml_namespace(uri, prefix)
	Register a new XML/XMP namespace.

	Parameters:
		uri – The long form of the namespace.

	prefix – The alias to use when interpreting XMP.

	
class pikepdf.models.Encryption
	Specify the encryption settings to apply when a PDF is saved.

	
R = 6
	Select the security handler algorithm to use. Choose from:
2, 3, 4 or 6. By default, the highest version of
is selected (6). 5 is a deprecated algorithm that should
not be used.

	
aes = True
	If True, request the AES algorithm. If False, use RC4.
If omitted, AES is selected whenever possible (R >= 4).

	
allow
	The permissions to set.
If omitted, all permissions are granted to the user.

	
metadata = True
	If True, also encrypt the PDF metadata. If False,
metadata is not encrypted. Reading document metadata without
decryption may be desirable in some cases. Requires aes=True.
If omitted, metadata is encrypted whenever possible.

	
owner =
	The owner password to use. This allows full control
of the file. If blank, the PDF will be encrypted and
present as “(SECURED)” in PDF viewers. If the owner password
is blank, the user password should be as well.

	
user =
	The user password to use. With this password, some
restrictions will be imposed by a typical PDF reader.
If blank, the PDF can be opened by anyone, but only modified
as allowed by the permissions in allow.

	
class pikepdf.models.Outline(pdf, max_depth=15, strict=False)
	Maintains a intuitive interface for creating and editing PDF document outlines.

See PDF 1.7 Reference Manual section 12.3.

	Parameters:
		pdf (pikepdf._core.Pdf) – PDF document object.

	max_depth (int) – Maximum recursion depth to consider when reading the outline.

	strict (bool) – If set to False (default) silently ignores structural errors.
Setting it to True raises a
pikepdf.OutlineStructureError
if any object references re-occur while the outline is being read or
written.

See also

pikepdf.Pdf.open_outline()

	
add(title, destination)
	Add an item to the outline.

	Parameters:
		title (str) – Title of the outline item.

	destination (pikepdf.objects.Array | int | None) – Destination to jump to when the item is selected.

	Returns:
	The newly created OutlineItem.

	Return type:
	OutlineItem

	
property root
	Return the root node of the outline.

	Return type:
	list[OutlineItem]

	
class pikepdf.models.OutlineItem(title, destination=None, page_location=None, action=None, obj=None, *, left=None, top=None, right=None, bottom=None, zoom=None)
	Manage a single item in a PDF document outlines structure.

Includes nested items.

	Parameters:
		title (str) – Title of the outlines item.

	destination (pikepdf.objects.Array | pikepdf.objects.String | pikepdf.objects.Name | int | None) – Page number, destination name, or any other PDF object
to be used as a reference when clicking on the outlines entry. Note
this should be None if an action is used instead. If set to a
page number, it will be resolved to a reference at the time of
writing the outlines back to the document.

	page_location (PageLocation | str | None) – Supplemental page location for a page number
in destination, e.g. PageLocation.Fit. May also be
a simple string such as 'FitH'.

	action (pikepdf.objects.Dictionary | None) – Action to perform when clicking on this item. Will be ignored
during writing if destination is also set.

	obj (pikepdf.objects.Dictionary | None) – Dictionary object representing this outlines item in a Pdf.
May be None for creating a new object. If present, an existing
object is modified in-place during writing and original attributes
are retained.

	left (float | None) – Describes the viewport position associated
with a destination.

	top (float | None) – Describes the viewport position associated
with a destination.

	bottom (float | None) – Describes the viewport position associated
with a destination.

	right (float | None) – Describes the viewport position associated
with a destination.

	zoom (float | None) – Describes the viewport position associated
with a destination.

This object does not contain any information about higher-level or
neighboring elements.

	Valid destination arrays:
	[page /XYZ left top zoom]
generally
[page, PageLocationEntry, 0 to 4 ints]

	
classmethod from_dictionary_object(obj)
	Create a OutlineItem from a Dictionary.

Does not process nested items.

	Parameters:
	obj (pikepdf.objects.Dictionary) – Dictionary object representing a single outline node.

	
to_dictionary_object(pdf, create_new=False)
	Create/update a Dictionary object from this outline node.

Page numbers are resolved to a page reference on the input
Pdf object.

	Parameters:
		pdf (pikepdf._core.Pdf) – PDF document object.

	create_new (bool) – If set to True, creates a new object instead of
modifying an existing one in-place.

	Return type:
	pikepdf.objects.Dictionary

	
class pikepdf.Permissions
	Stores the user-level permissions for an encrypted PDF.

A compliant PDF reader/writer should enforce these restrictions on people
who have the user password and not the owner password. In practice, either
password is sufficient to decrypt all document contents. A person who has
the owner password should be allowed to modify the document in any way.
pikepdf does not enforce the restrictions in any way; it is up to application
developers to enforce them as they see fit.

Unencrypted PDFs implicitly have all permissions allowed. Permissions can
only be changed when a PDF is saved.

	
accessibility = True
	Deprecated in PDF 2.0. Formerly used to block accessibility tools.

In older versions of the PDF specification, it was possible to request
a PDF reader to block a user’s right to use accessibility tools. Modern
PDF readers do not support this archaic feature and always allow accessibility
tools to be used. The only purpose of this permission is to provide
testing of this deprecated feature.

	
extract = True
	Can users extract contents?

	
modify_annotation = True
	Can users modify annotations?

	
modify_assembly = False
	Can users arrange document contents?

	
modify_form = True
	Can users fill out forms?

	
modify_other = True
	Can users modify the document?

	
print_highres = True
	Can users print the document at high resolution?

	
print_lowres = True
	Can users print the document at low resolution?

	
class pikepdf.models.EncryptionInfo(encdict)
	Reports encryption information for an encrypted PDF.

This information may not be changed, except when a PDF is saved.
This object is not used to specify the encryption settings to save
a PDF, due to non-overlapping information requirements.

	Parameters:
	encdict (dict[str, Any]) –

	
property P
	Return encoded permission bits.

See Pdf.allow() instead.

	Return type:
	int

	
property R
	Revision number of the security handler.

	Return type:
	int

	
property V
	Version of PDF password algorithm.

	Return type:
	int

	
property bits
	Return the number of bits in the encryption algorithm.

e.g. if the algorithm is AES-256, this returns 256.

	Return type:
	int

	
property encryption_key
	Return the RC4 or AES encryption key used for this file.

	Return type:
	bytes

	
property file_method
	Encryption method used to encode the whole file.

	Return type:
	pikepdf._core.EncryptionMethod

	
property stream_method
	Encryption method used to encode streams.

	Return type:
	pikepdf._core.EncryptionMethod

	
property string_method
	Encryption method used to encode strings.

	Return type:
	pikepdf._core.EncryptionMethod

	
property user_password
	If possible, return the user password.

The user password can only be retrieved when a PDF is opened
with the owner password and when older versions of the
encryption algorithm are used.

The password is always returned as bytes even if it has
a clear Unicode representation.

	Return type:
	bytes

	
class pikepdf.Annotation(obj)
	A PDF annotation. Wrapper around a PDF dictionary.

Describes an annotation in a PDF, such as a comment, underline,
copy editing marks, interactive widgets, redactions, 3D objects, sound
and video clips.

See the PDF 1.7 Reference Manual section 12.5.6 for the full list of annotation types
and definition of terminology.

New in version 2.12.

	Parameters:
	obj (Object) –

	
property appearance_dict
	Returns the annotations appearance dictionary.

	Return type:
	Object

	
property appearance_state
	Returns the annotation’s appearance state (or None).

For a checkbox or radio button, the appearance state may be pikepdf.Name.On
or pikepdf.Name.Off.

	Return type:
	Object

	
property flags
	Returns the annotation’s flags.

	Return type:
	int

	
get_appearance_stream(which, state=...)
	Returns one of the appearance streams associated with an annotation.

	Parameters:
		which (Object) – Usually one of pikepdf.Name.N, pikepdf.Name.R or
pikepdf.Name.D, indicating the normal, rollover or down
appearance stream, respectively. If any other name is passed,
an appearance stream with that name is returned.

	state (Object | None) – The appearance state. For checkboxes or radio buttons, the
appearance state is usually whether the button is on or off.

	Return type:
	Object

	
get_page_content_for_appearance(name, rotate, required_flags=..., forbidden_flags=...)
	Generate content stream text that draws this annotation as a Form XObject.

	Parameters:
		name (pikepdf.objects.Name) – What to call the object we create.

	rotate (int) – Should be set to the page’s /Rotate value or 0.

	required_flags (int) – The required appearance flags. See PDF reference manual.

	forbidden_flags (int) – The forbidden appearance flags. See PDF reference manual.

	Return type:
	bytes

Note

This method is done mainly with QPDF. Its behavior may change when
different QPDF versions are used.

	
property obj
		Return type:
	Object

	
property subtype
	Returns the subtype of this annotation.

	Return type:
	str

	
class pikepdf._core.Attachments(*args, **kwargs)
	Exposes files attached to a PDF.

If a file is attached to a PDF, it is exposed through this interface.
For example p.attachments['readme.txt'] would return a
pikepdf._core.AttachedFileSpec that describes the attached file,
if a file were attached under that name.
p.attachments['readme.txt'].get_file() would return a
pikepdf._core.AttachedFile, an archaic intermediate object to support
different versions of the file for different platforms. Typically one
just calls p.attachments['readme.txt'].read_bytes() to get the
contents of the file.

This interface provides access to any files that are attached to this PDF,
exposed as a Python collections.abc.MutableMapping interface.

The keys (virtual filenames) are always str, and values are always
pikepdf.AttachedFileSpec.

To create a new attached file, use
pikepdf._core.AttachedFileSpec.from_filepath()
to create a pikepdf._core.AttachedFileSpec and then assign it to the
pikepdf.Pdf.attachments mapping. If the file is in memory, use
p.attachments['test.pdf'] = b'binary data'.

Use this interface through pikepdf.Pdf.attachments.

New in version 3.0.

Changed in version 8.10.1: Added convenience interface for directly loading attached files, e.g.
pdf.attachments['/test.pdf'] = b'binary data'. Prior to this release,
there was no way to attach data in memory as a file.

	
class pikepdf.AttachedFileSpec(data, *, description, filename, mime_type, creation_date, mod_date)
	In a PDF, a file specification provides name and metadata for a target file.

Most file specifications are simple file specifications, and contain only
one attached file. Call get_file() to get the attached file:

pdf = Pdf.open(...)

fs = pdf.attachments['example.txt']
stream = fs.get_file()

To attach a new file to a PDF, you may construct a AttachedFileSpec.

pdf = Pdf.open(...)

fs = AttachedFileSpec.from_filepath(pdf, Path('somewhere/spreadsheet.xlsx'))

pdf.attachments['spreadsheet.xlsx'] = fs

PDF supports the concept of having multiple, platform-specialized versions of the
attached file (similar to resource forks on some operating systems). In theory,
this attachment ought to be the same file, but
encoded in different ways. For example, perhaps a PDF includes a text file encoded
with Windows line endings (\r\n) and a different one with POSIX line endings
(\n). Similarly, PDF allows for the possibility that you need to encode
platform-specific filenames. pikepdf cannot directly create these, because they
are arguably obsolete; it can provide access to them, however.

If you have to deal with platform-specialized versions,
use get_all_filenames() to enumerate those available.

Described in the PDF 1.7 Reference Manual section 7.11.3.

New in version 3.0.

	Parameters:
		data (bytes) –

	description (str) –

	filename (str) –

	mime_type (str) –

	creation_date (str) –

	mod_date (str) –

	
__init__(data, *, description, filename, mime_type, creation_date, mod_date)
	Construct a attached file spec from data in memory.

To construct a file spec from a file on the computer’s file system,
use from_filepath().

	Parameters:
		data (bytes) – Resource to load.

	description (str) – Any description text for the attachment. May be
shown in PDF viewers.

	filename (str) – Filename to display in PDF viewers.

	mime_type (str) – Helps PDF viewers decide how to display the information.

	creation_date (str) – PDF date string for when this file was created.

	mod_date (str) – PDF date string for when this file was last modified.

	relationship – A pikepdf.Name indicating the relationship
of this file to the document. Canonically, this should be a name
from the PDF specification:
Source, Data, Alternative, Supplement, EncryptedPayload, FormData,
Schema, Unspecified. If omitted, Unspecified is used.

	Return type:
	None

	
property description
	Description text associated with the embedded file.

	Return type:
	str

	
property filename
	The main filename for this file spec.

In priority order, getting this returns the first of /UF, /F, /Unix,
/DOS, /Mac if multiple filenames are set. Setting this will set a UTF-8
encoded Unicode filename and write it to /UF.

	Return type:
	str

	
static from_filepath(pdf, path, *, description='')
	Construct a file specification from a file path.

This function will automatically add a creation and modified date
using the file system, and a MIME type inferred from the file’s extension.

If the data required for the attach is in memory, use
pikepdf.AttachedFileSpec() instead.

	Parameters:
		pdf (Pdf) – The Pdf to attach this file specification to.

	path (pathlib.Path | str) – A file path for the file to attach to this Pdf.

	description (str) – An optional description. May be shown to the user in
PDF viewers.

	relationship – An optional relationship type. May be used to
indicate the type of attachment, e.g. Name.Source or Name.Data.
Canonically, this should be a name from the PDF specification:
Source, Data, Alternative, Supplement, EncryptedPayload, FormData,
Schema, Unspecified. If omitted, Unspecified is used.

	Return type:
	AttachedFileSpec

	
get_all_filenames()
	Return a Python dictionary that describes all filenames.

The returned dictionary is not a pikepdf Object.

Multiple filenames are generally a holdover from the pre-Unicode era.
Modern PDFs can generally set UTF-8 filenames and avoid using
punctuation or other marks that are forbidden in filenames.

	Return type:
	dict

	
get_file(name=...)
	Return an attached file.

Typically, only one file is attached to an attached file spec.
When multiple files are attached, use the name parameter to
specify which one to return.

	Parameters:
	name (pikepdf.objects.Name) – Typical names would be /UF and /F. See PDF 1.7 Reference Manual
for other obsolete names.

	Return type:
	AttachedFile

	
property obj
	Get the underlying PDF object (typically a Dictionary).

	Return type:
	pikepdf.objects.Dictionary

	
property relationship
	Describes the relationship of this attached file to the PDF.

	Return type:
	pikepdf.objects.Name | None

	
class pikepdf._core.AttachedFile
	An object that contains an actual attached file.

These objects do not need to be created manually; they are normally part of an
AttachedFileSpec.

New in version 3.0.

	
creation_date
	

	
property md5
	Get the MD5 checksum of attached file according to the PDF creator.

	Return type:
	bytes

	
mime_type
	Get the MIME type of the attached file according to the PDF creator.

	
mod_date
	

	
property obj
		Return type:
	Object

	
read_bytes()
		Return type:
	bytes

	
property size
	Get length of the attached file in bytes according to the PDF creator.

	Return type:
	int

	
class pikepdf.NameTree(obj, *, auto_repair=...)
	An object for managing name tree data structures in PDFs.

A name tree is a key-value data structure. The keys are any binary strings
(that is, Python bytes). If str selected is provided as a key,
the UTF-8 encoding of that string is tested. Name trees are (confusingly)
not indexed by pikepdf.Name objects. They behave like
DictMapping[bytes, pikepdf.Object].

The keys are sorted; pikepdf will ensure that the order is preserved.

The value may be any PDF object. Typically it will be a dictionary or array.

Internally in the PDF, a name tree can be a fairly complex tree data structure
implemented with many dictionaries and arrays. pikepdf (using libqpdf)
will automatically read, repair and maintain this tree for you. There should not
be any reason to access the internal nodes of a number tree; use this
interface instead.

NameTrees are used to store certain objects like file attachments in a PDF.
Where a more specific interface exists, use that instead, and it will
manipulate the name tree in a semantic correct manner for you.

Do not modify the internal structure of a name tree while you have a
NameTree referencing it. Access it only through the NameTree object.

Names trees are described in the PDF 1.7 Reference Manual section 7.9.6. See section 7.7.4
for a list of PDF objects that are stored in name trees.

New in version 3.0.

	Parameters:
		obj (Object) –

	auto_repair (bool) –

	
static new(pdf, *, auto_repair=True)
	Create a new NameTree in the provided Pdf.

You will probably need to insert the name tree in the PDF’s
catalog. For example, to insert this name tree in
/Root /Names /Dests:

nt = NameTree.new(pdf)
pdf.Root.Names.Dests = nt.obj

	Parameters:
		pdf (Pdf) –

	auto_repair (bool) –

	Return type:
	NameTree

	
property obj
	Returns the underlying root object for this name tree.

	Return type:
	Object

	
class pikepdf.NumberTree(obj, *, auto_repair=...)
	An object for managing number tree data structures in PDFs.

A number tree is a key-value data structure, like name trees, except that the
key is an integer. It behaves like Dict[int, pikepdf.Object].

The keys can be sparse - not all integers positions will be populated. Keys
are also always sorted; pikepdf will ensure that the order is preserved.

The value may be any PDF object. Typically it will be a dictionary or array.

Internally in the PDF, a number tree can be a fairly complex tree data structure
implemented with many dictionaries and arrays. pikepdf (using libqpdf)
will automatically read, repair and maintain this tree for you. There should not
be any reason to access the internal nodes of a number tree; use this
interface instead.

NumberTrees are not used much in PDF. The main thing they provide is a mapping
between 0-based page numbers and user-facing page numbers (which pikepdf
also exposes as Page.label). The /PageLabels number tree is where the
page numbering rules are defined.

Number trees are described in the PDF 1.7 Reference Manual section 7.9.7. See section 12.4.2
for a description of the page labels number tree. Here is an example of modifying
an existing page labels number tree:

pagelabels = NumberTree(pdf.Root.PageLabels)
Label pages starting at 0 with lowercase Roman numerals
pagelabels[0] = Dictionary(S=Name.r)
Label pages starting at 6 with decimal numbers
pagelabels[6] = Dictionary(S=Name.D)

Page labels will now be:
i, ii, iii, iv, v, 1, 2, 3, ...

Do not modify the internal structure of a name tree while you have a
NumberTree referencing it. Access it only through the NumberTree object.

New in version 5.4.

	Parameters:
		obj (Object) –

	auto_repair (bool) –

	
static new(pdf, *, auto_repair=True)
	Create a new NumberTree in the provided Pdf.

You will probably need to insert the number tree in the PDF’s
catalog. For example, to insert this number tree in
/Root /PageLabels:

nt = NumberTree.new(pdf)
pdf.Root.PageLabels = nt.obj

	Parameters:
		pdf (Pdf) –

	auto_repair (bool) –

	Return type:
	NumberTree

	
property obj
		Return type:
	Object

 Previous
 Next

 © Copyright 2023, James R. Barlow.
 Revision 3b7f6141.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

