

 pikepdf

 latest

 Introduction

	Installation	Basic installation
	Binary wheel availability
	Platform support	Debian, Ubuntu and other APT-based distributions
	Fedora
	Alpine Linux

	Installing on FreeBSD
	Building from source	Requirements
	 GCC or Clang, linking to system libraries
	 GCC or Clang and linking to user libraries
	 On Windows (requires Visual Studio 2015)
	 Building against a QPDF source tree

	Building the documentation
	PyPy3 support

	Tutorial

Release notes

	Release notes

Topics

	PDF split, merge, and document assembly
	Working with pages
	Object model
	Stream objects
	Working with content streams
	Working with images
	Overlays, underlays, watermarks, n-up
	Character encoding
	Metadata
	Outlines
	Name trees
	Attaching files to a PDF
	Default appearance in PDF viewers
	PDF security

API

	Main objects
	Support models
	Content streams
	Exceptions
	Settings

Reference

	Architecture
	Build process notes
	Contributing guidelines
	Debugging
	Resources

 pikepdf

 	
	Installation
	
 Edit on GitHub

Installation

Basic installation

Most users on Linux, macOS or Windows with x64 systems should use pip to
install pikepdf in their current Python environment (such as your project’s
virtual environment).

pip install pikepdf

Use pip install --user pikepdf to install the package for the current user
only. Use pip install pikepdf to install to a virtual environment.

Binary wheel availability

Python binary wheel availability		3.8
	3.9
	3.10
	3.11
	3.12
	PyPy 3.9
	PyPy 3.10

	 macOS Intel
	✅
	✅
	✅
	✅
	✅
	✅
	⏳

	 macOS Apple Silicon
	❌
	✅
	✅
	✅
	✅
	⏳
	⏳

	 Windows x64
	✅
	✅
	✅
	✅
	✅
	✅
	⏳

	 manylinux2014 x64
	✅
	✅
	✅
	✅
	✅
	✅
	⏳

	 manylinux2014 aarch64 (ARM64)
	✅
	✅
	✅
	✅
	✅
	⏳
	⏳

	 musllinux x64
	❌
	✅
	✅
	✅
	✅
	⏳
	⏳

	 musllinux aarch64 (ARM64)
	❌
	⏳
	⏳
	⏳
	⏳
	⏳
	⏳

	✅ wheels are available

	❌ wheels are not likely to be produced for this platform and Python version

	⏳ we are waiting on a third party to implement better support for this configuration

Binary wheels should work on most systems, provided a recent version
of pip is used to install them. Old versions of pip, especially before 20.0,
may fail to check appropriate versions.

macOS 10.14 or newer is typically required for binary wheels. Older versions may
work if compiled from source.

Windows 7 or newer is required. Windows wheels include a recent copy of libqpdf.

Most Linux distributions support manylinux2014, with the notable except of
Alpine Linux, and older Linux distributions that do not have C++17-capable
compilers. The Linux wheels include recent copies of libqpdf, libjpeg, and zlib.

Source builds are usually possible where binary wheels are available.

Platform support

Some platforms include versions of pikepdf that are distributed by the system
package manager (such as apt). These versions may lag behind the version
distributed with PyPI, but may be convenient for users that cannot use binary
wheels.

Packaged fish.

Debian, Ubuntu and other APT-based distributions

apt install pikepdf

Fedora

dnf install python-pikepdf

Alpine Linux

apk add py3-pikepdf

Installing on FreeBSD

pkg install py38-pikepdf

To attempt a manual install, try something like:

pkg install python3 py38-lxml py38-pip py38-pybind11 qpdf
pip install --user pikepdf

This procedure is known to work on FreeBSD 11.3, 12.0, 12.1-RELEASE and
13.0-CURRENT. It has not been tested on other versions.

Building from source

Requirements

pikepdf requires:

	a C++17 compliant compiler - roughly GCC 7+, clang 6+, or MSVC 19+

	pybind11

	libqpdf 11.5.0 or higher from the
QPDF project.

On Linux the library and headers for libqpdf must be installed because pikepdf
compiles code against it and links to it.

Check Repology for QPDF to
see if a recent version of QPDF is available for your platform. Otherwise you
must
build QPDF from source.
(Consider using the binary wheels, which bundle the required version of
libqpdf.)

Note

pikepdf should be built with the same compiler and linker as libqpdf; to be
precise both must use the same C++ ABI. On some platforms, setup.py may
not pick the correct compiler so one may need to set environment variables
CC and CXX to redirect it. If the wrong compiler is selected,
import pikepdf._core will throw an ImportError about a missing
symbol.

 GCC or Clang, linking to system libraries

To link to system libraries (the ones installed by your package manager, such
apt, brew or dnf:

	Clone the pikepdf repository

	Install libjpeg, zlib and libqpdf on your platform, including headers

	If desired, activate a virtual environment

	Run pip install .

 GCC or Clang and linking to user libraries

setuptools will normally attempt to link against your system libraries.
If you wish to link pikepdf against a different version of the QPDF (say,
because pikepdf requires a newer version than your operating system has),
then you might do something like:

	Install the development headers for libjpeg and zlib (e.g. apt install libjpeg-dev)

	Build qpdf from source and run cmake --install to install it to /usr/local

	Clone the pikepdf repository

	From the pikepdf directory, run

env CXXFLAGS=-I/usr/local/include/libqpdf LDFLAGS=-L/usr/local/lib \
 pip install .

 On Windows (requires Visual Studio 2015)

pikepdf requires a C++17 compliant compiler (i.e. Visual Studio 2015 on
Windows). See our continuous integration build script in .appveyor.yml
for detailed and current instructions. Or use the wheels which save this pain.

These instructions require the precompiled binary qpdf.dll. See the QPDF
documentation if you also need to build this DLL from source. Both should be
built with the same compiler. You may not mix and match MinGW and Visual C++
for example.

Running a regular pip install command will detect the
version of the compiler used to build Python and attempt to build the
extension with it. We must force the use of Visual Studio 2015.

	Clone this repository.

	In a command prompt, run:

%VS140COMNTOOLS%\..\..\VC\vcvarsall.bat" x64
set DISTUTILS_USE_SDK=1
set MSSdk=1

	Download qpdf-11.8.0-bin-msvc64.zip from the QPDF releases page.

	Extract bin*.dll (all the DLLs, both QPDF’s and the Microsoft Visual C++
Runtime library) from the zip file above, and copy it to the src/pikepdf
folder in the repository.

	Run pip install . in the root directory of the repository.

Note

The user compiling pikepdf to must have registry editing rights on the
machine to be able to run the vcvarsall.bat script.

 Building against a QPDF source tree

Follow these steps to build pikepdf against a different version of QPDF, rather than
the one provided with your operating system. This may be useful if you need a more
recent version of QPDF than your operating system package manager provides, and you
do not want to use Python wheels.

Build libqpdf from source
cd $QPDF_SOURCE_TREE
cmake -S . -B build -DCMAKE_BUILD_TYPE=RelWithDebInfo -DBUILD_SHARED_LIBS=ON
cmake --build build --parallel --target libqpdf
QPDF_BUILD_LIBDIR=$PWD/build/libqpdf

Build pikepdf against the custom libqpdf
cd $PIKEPDF_SOURCE_TREE
env QPDF_SOURCE_TREE=$QPDF_SOURCE_TREE QPDF_BUILD_LIBDIR=$QPDF_BUILD_LIBDIR \
 pip install -e .

Note that the Python wheels for pikepdf currently compile their own version of
QPDF and several of its dependencies to ensure the wheels have the latest version.
You can also refer to the GitHub Actions YAML files for build steps.

Building the documentation

Documentation is generated using Sphinx and you are currently reading it. To
regenerate it:

pip install pikepdf[docs]
cd docs
make html

PyPy3 support

PyPy3 is supported in certain configurations as listed in the binary wheel
availability table above.

PyPy3 is not more performant than CPython for pikepdf, because the core of pikepdf
is already written in C++. The benefit is for applications that want to use PyPy
for improved performance of native Python and also want to use pikepdf.

 Previous
 Next

 © Copyright 2023, James R. Barlow.
 Revision 3b7f6141.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

