

 pikepdf

 latest

 Introduction

	Installation
	Tutorial

Release notes

	Release notes

Topics

	PDF split, merge, and document assembly	Split a PDF into single page PDFs
	Merge (concatenate) PDF from several PDFs
	Reversing the order of pages
	Copying pages from other PDFs	Emplacing pages

	Copying pages within a PDF
	Using counting numbers
	Accessing page labels
	Pages information from Root

	Working with pages
	Object model
	Stream objects
	Working with content streams
	Working with images
	Overlays, underlays, watermarks, n-up
	Character encoding
	Metadata
	Outlines
	Name trees
	Attaching files to a PDF
	Default appearance in PDF viewers
	PDF security

API

	Main objects
	Support models
	Content streams
	Exceptions
	Settings

Reference

	Architecture
	Build process notes
	Contributing guidelines
	Debugging
	Resources

 pikepdf

 	
	PDF split, merge, and document assembly
	
 Edit on GitHub

PDF split, merge, and document assembly

This section discusses working with PDF pages: splitting, merging, copying,
deleting. We’re treating pages as a unit, rather than working with the content of
individual pages.

Let’s continue with fourpages.pdf from the Tutorial.

>>> from pikepdf import Pdf

>>> pdf = Pdf.open('../tests/resources/fourpages.pdf')

Note

In some parts of the documentation we skip closing Pdf objects for brevity.
In production code, you should open them in a with block or explicitly
close them.

Split a PDF into single page PDFs

All we need are new PDFs to hold the destination pages.

>>> pdf = Pdf.open('../tests/resources/fourpages.pdf')

>>> for n, page in enumerate(pdf.pages):
... dst = Pdf.new()
... dst.pages.append(page)
... dst.save(f'{n:02d}.pdf')

Note

This example will transfer data associated with each page, so
that every page stands on its own. It will not transfer some metadata
associated with the PDF as a whole, such as the list of bookmarks.

Merge (concatenate) PDF from several PDFs

In this example, we create an empty Pdf which will be the container for all
the others.

If you are looking to combine multiple PDF pages into a single page, see
Overlays, underlays, watermarks, n-up.

>>> from glob import glob

>>> pdf = Pdf.new()

>>> for file in glob('*.pdf'):
... src = Pdf.open(file)
... pdf.pages.extend(src.pages)

>>> pdf.save('merged.pdf')

This code sample is enough to merge most PDFs, but there are some things it
does not do that a more sophisticated function might do. One could call
pikepdf.Pdf.remove_unreferenced_resources() to remove unreferenced objects
from the pages’ /Resources dictionaries. It may also be necessary to chose the
most recent version of all source PDFs. Here is a more sophisticated example:

>>> from glob import glob

>>> pdf = Pdf.new()

>>> version = pdf.pdf_version

>>> for file in glob('*.pdf'):
... src = Pdf.open(file)
... version = max(version, src.pdf_version)
... pdf.pages.extend(src.pages)

>>> pdf.remove_unreferenced_resources()

>>> pdf.save('merged.pdf', min_version=version)

This improved example would still leave metadata blank. It’s up to you
to decide how to combine metadata from multiple PDFs.

Reversing the order of pages

Suppose the file was scanned backwards. We can easily reverse it in
place - maybe it was scanned backwards, a common problem with automatic
document scanners.

>>> pdf.pages.reverse()

>>> pdf
<pikepdf.Pdf description='../tests/resources/fourpages.pdf'>

Pretty nice, isn’t it? But the pages in this file already were in correct
order, so let’s put them back.

>>> pdf.pages.reverse()

Copying pages from other PDFs

Now, let’s add some content from another file. Because pdf.pages behaves
like a list, we can use pages.extend() on another file’s pages.

>>> pdf = Pdf.open('../tests/resources/fourpages.pdf')

>>> appendix = Pdf.open('../tests/resources/sandwich.pdf')

>>> pdf.pages.extend(appendix.pages)

We can use pages.insert() to insert into one of more pages into a specific
position, bumping everything else ahead.

Copying pages between Pdf objects will create a shallow copy of the source
page within the target Pdf, rather than the typical Python behavior of
creating a reference. Therefore modifying pdf.pages[-1] will not affect
appendix.pages[0]. (Normally, assigning objects between Python lists creates
a reference, so that the two objects are identical, list[0] is list[1].)

>>> graph = Pdf.open('../tests/resources/graph.pdf')

>>> pdf.pages.insert(1, graph.pages[0])

>>> len(pdf.pages)
6

We can also replace specific pages with assignment (or slicing).

>>> congress = Pdf.open('../tests/resources/congress.pdf')

>>> pdf.pages[2].objgen
(4, 0)

>>> pdf.pages[2] = congress.pages[0]

>>> pdf.pages[2].objgen
(33, 0)

The method above will break any indirect references (such as table of contents
entries and hyperlinks) within pdf to pdf.pages[2]. Perhaps that is the
behavior you want, if the replacement means those references are no longer
valid. This is shown by the change in pikepdf.Object.objgen.

Emplacing pages

Perhaps the PDF you are working with has a table of contents or internal hyperlinks,
meaning that there are indirect references to a specific page object. If you
want change the content of a page object while preserving references to it,
use pikepdf.Object.emplace(), which will delete all of the content of
the target and replace it with the content of the source, thus preserving
indirect references to the page. (Think of this as demolishing the interior
of a house, but keeping it at the same address.)

>>> pdf = Pdf.open('../tests/resources/fourpages.pdf')

>>> congress = Pdf.open('../tests/resources/congress.pdf')

>>> pdf.pages[2].objgen
(5, 0)

>>> pdf.pages.append(congress.pages[0]) # Transfer page to new pdf

>>> pdf.pages[2].emplace(pdf.pages[-1])

>>> del pdf.pages[-1] # Remove donor page

>>> pdf.pages[2].objgen
(5, 0)

Copying pages within a PDF

As you may have guessed, we can assign pages to copy them within a Pdf:

>>> pdf = Pdf.open('../tests/resources/fourpages.pdf')

>>> pdf.pages[3] = pdf.pages[0] # The last shall be made first

As above, copying a page creates a shallow copy rather than a Python object
reference.

Also as above pikepdf.Object.emplace() can be used to create a copy that
preserves the functionality of indirect references within the PDF.

Using counting numbers

Because PDF pages are usually numbered in counting numbers (1, 2, 3…),
pikepdf provides a convenience accessor .p() that uses counting
numbers:

>>> pdf.pages.p(1) # The first page in the document

>>> pdf.pages[0] # Also the first page in the document

>>> pdf.pages.remove(p=1) # Remove first page in the document

To avoid confusion, the .p() accessor does not accept Python slices,
and .p(0) raises an exception. It is also not possible to delete using it.

PDFs may define their own numbering scheme or different numberings for
different sections, such as using Roman numerals for an introductory section.
.pages does not look up this information.

Accessing page labels

If a PDF defines custom page labels, such as a typical report with preface material
beginning with Roman numerals (i, ii, iii…), body using Arabic numerals (1, 2, 3…),
and an appendix using some other convention (A-1, A-2, …), you can look up the
page label as follows:

>>> pdf.pages[1].label
'i'

There is currently no API to help with modifying the pdf.Root.PageLabels data
structure, which contains the label definitions.

Pages information from Root

Warning

It’s possible to obtain page information through pikepdf.Pdf.Root
object but not recommended. (In PDF parlance, this is the /Root
object).

The internal consistency of the various /Page and /Pages is not
guaranteed when accessed in this manner, and in some PDFs the data structure
for these is fairly complex. Use the .pages interface instead.

 Previous
 Next

 © Copyright 2023, James R. Barlow.
 Revision 3b7f6141.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

