

 pikepdf

 stable

 Introduction

	Installation
	Tutorial

Release notes

	Release notes

Topics

	PDF split, merge, and document assembly
	Working with pages
	Object model
	Stream objects
	Working with content streams
	Working with images
	Overlays, underlays, watermarks, n-up
	Character encoding	PDFDocEncoding
	Other codecs

	Metadata
	Outlines
	Name trees
	Attaching files to a PDF
	Default appearance in PDF viewers
	PDF security

API

	Main objects
	Support models
	Content streams
	Exceptions
	Settings

Reference

	Architecture
	Build process notes
	Contributing guidelines
	Debugging
	Resources

 pikepdf

 	
	Character encoding
	
 Edit on GitHub

Character encoding

There are three hard problems in computer science:

1) Converting from PDF,

2) Converting to PDF, and

3) O̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳Ҙ҉҉҉ʹʹ҉ʹ̨̨̨̨̨̨̨̨̃༃༃O̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳Ҙ҉҉҉ʹʹ҉ʹ̨̨̨̨̨̨̨̨̃༃༃ʹʹ҉ʹ̨̨̨̨̨̨̨̨̃༃༃

—Marseille Folog

In most circumstances, pikepdf performs appropriate encodings and
decodings on its own, or returns pikepdf.String if it is not clear
whether to present data as a string or binary data.

str(pikepdf.String) is performed by inspecting the binary data. If the
binary data begins with a UTF-16 byte order mark, then the data is
interpreted as UTF-16 and returned as a Python str. Otherwise, the data
is returned as a Python str, if the binary data will be interpreted as
PDFDocEncoding and decoded to str. Again, in most cases this is correct
behavior and will operate transparently.

Some functions are available in circumstances where it is necessary to force
a particular conversion.

PDFDocEncoding

The PDF specification defines PDFDocEncoding, a character encoding used only
in PDFs. This encoding matches ASCII for code points 32 through 126 (0x20 to
0x7e). At all other code points, it is not ASCII and cannot be treated as
equivalent. If you look at a PDF in a binary file viewer (hex editor), a string
surrounded by parentheses such as (Hello World) is usually using
PDFDocEncoding.

When pikepdf is imported, it automatically registers "pdfdoc" as a codec
with the standard library, so that it may be used in string and byte
conversions.

"•".encode('pdfdoc') == b'\x81'

Other Python PDF libraries may register their own pdfdoc codecs. Unfortunately,
the order of imports will determine which codec “wins” and gets mapped
to the 'pdfdoc' string. Fortunately, these implementations should be
quite compatible with each other anyway since they do the same things.

pikepdf also registers 'pdfdoc_pikepdf', if you want to ensure use of
pikepdf’s codec, i.e. s.encode('pdfdoc_pikepdf').

Changed in version 5.0.0: Some issues with the conversion of obscure characters in PDFDocEncoding
were fixed. Older versions of pikepdf may not convert PDFDocEncoding
in all cases.

Other codecs

Two other codecs are commonly used in PDFs, but they are already part of the
standard library.

WinAnsiEncoding is identical Windows Code Page 1252, and may be converted
using the "cp1252" codec.

MacRomanEncoding may be converted using the "macroman" codec.

 Previous
 Next

 © Copyright 2023, James R. Barlow.
 Revision 3b7f6141.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: stable

 	Versions
	latest
	stable

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

