

 pikepdf

 stable

 Introduction

	Installation
	Tutorial

Release notes

	Release notes

Topics

	PDF split, merge, and document assembly
	Working with pages
	Object model
	Stream objects
	Working with content streams
	Working with images
	Overlays, underlays, watermarks, n-up
	Character encoding
	Metadata	Automatic metadata updates
	Accessing metadata
	Removing metadata items
	Checking PDF/A conformance
	Notice for application developers
	Low-level XMP metadata access
	The Document Info dictionary

	Outlines
	Name trees
	Attaching files to a PDF
	Default appearance in PDF viewers
	PDF security

API

	Main objects
	Support models
	Content streams
	Exceptions
	Settings

Reference

	Architecture
	Build process notes
	Contributing guidelines
	Debugging
	Resources

 pikepdf

 	
	Metadata
	
 Edit on GitHub

Metadata

PDF has two different types of metadata: XMP metadata, and DocumentInfo, which
is deprecated and removed as of PDF 2.0, but still relevant. For backward
compatibility, both should contain the same content. pikepdf provides a convenient
interface that coordinates edits to both, but is limited to the most common
metadata features.

XMP (Extensible Metadata Platform) Metadata is a metadata specification in XML
format that is used many formats other than PDF. For full information on XMP,
see Adobe’s XMP Developer Center.
The XMP Specification also provides useful information.

pikepdf can read compound metadata quantities, but can only modify scalars. For
more complex changes consider using the python-xmp-toolkit library and its
libexempi dependency; but note that it is not capable of synchronizing changes
to the older DocumentInfo metadata.

Automatic metadata updates

By default pikepdf will create a XMP metadata block and set pdf:PDFVersion
to a value that matches the PDF version declared elsewhere in the PDF, whenever
a PDF is saved. To suppress this behavior, save with
pdf.save(..., fix_metadata_version=False).

Also by default, Pdf.open_metadata() will synchronize the XMP metadata
with the older document information dictionary. This behavior can also be
adjusted using keyword arguments.

Accessing metadata

The XMP metadata stream is attached the PDF’s root object, but to simplify
management of this, use pikepdf.Pdf.open_metadata(). The returned
pikepdf.models.PdfMetadata object may be used for reading, or entered
with a with block to modify and commit changes. If you use this interface,
pikepdf will synchronize changes to new and old metadata.

A PDF must still be saved after metadata is changed.

>>> pdf = pikepdf.open('../tests/resources/sandwich.pdf')

>>> meta = pdf.open_metadata()

>>> meta['xmp:CreatorTool']
'ocrmypdf 5.3.3 / Tesseract OCR-PDF 3.05.01'

If no XMP metadata exists, an empty XMP metadata container will be created.

Open metadata in a with block to open it for editing. When the block is
exited, changes are committed (updating XMP and the Document Info dictionary)
and attached to the PDF object. The PDF must still be saved. If an exception
occurs in the block, changes are discarded.

>>> with pdf.open_metadata() as meta:
... meta['dc:title'] = "Let's change the title"
...

The list of available metadata fields may be found in the XMP Specification.

Removing metadata items

After opening metadata, use del meta['dc:title'] to delete a metadata entry.

To remove all of a PDF’s metadata records, don’t use pdf.open_metadata.
Instead, use del pdf.Root.Metadata and del pdf.docinfo
to remove the XMP and document info metadata, respectively.

Checking PDF/A conformance

The metadata interface can also test if a file claims to be conformant
to the PDF/A specification.

>>> pdf = pikepdf.open('../tests/resources/veraPDF test suite 6-2-10-t02-pass-a.pdf')

>>> meta = pdf.open_metadata()

>>> meta.pdfa_status
'1B'

Note

Note that this property merely tests if the file claims to be conformant to
the PDF/A standard. Use a tool such as veraPDF (official tool), or third party
web services such as PDFEN or 3-HEIGHTS™ PDF VALIDATOR to verify conformance.

Notice for application developers

If you are using pikepdf to create some kind of PDF application, you should
update the fields xmp:CreatorTool and pdf:Producer. You could, for
example, set xmp:CreatorTool to your application’s name and version, and
pdf:Producer to pikepdf. Refer to Adobe’s documentation to decide what
describes the circumstances.

This will help PDF developers identify the application that generated a
particular PDF and is valuable debugging information.

Low-level XMP metadata access

You can read the raw XMP metadata if desired. For example, one could extract it and
edit it using the full featured python-xmp-toolkit library.

>>> xmp = pdf.Root.Metadata.read_bytes()

>>> type(xmp)
<class 'bytes'>

>>> print(xmp.decode()[:len("<?xpacket")] + "...")
<?xpacket...

Editing XMP with a generic XML library is probably not worth the trouble; the
semantics are fairly complex.

Warning

Manually changes to XMP stream object will not be synchronized with live
PdfMetadata object or the DocumentInfo block.

The Document Info dictionary

The Document Info block is an older, now deprecated object in which metadata
may be stored. The Document Info is not attached to the /Root object.
It may be accessed using the .docinfo property. If no Document Info exists,
touching the .docinfo will properly initialize an empty one.

Here is an example of a Document Info block.

>>> pdf = pikepdf.open('../tests/resources/sandwich.pdf')

>>> pdf.docinfo
pikepdf.Dictionary({
 "/CreationDate": "D:20170911132748-07'00'",
 "/Creator": "ocrmypdf 5.3.3 / Tesseract OCR-PDF 3.05.01",
 "/ModDate": "D:20170911132748-07'00'",
 "/Producer": "GPL Ghostscript 9.21"
})

It is permitted in pikepdf to directly interact with Document Info as with
other PDF dictionaries. However, it is better to use .open_metadata()
because that interface will apply changes to both XMP and Document Info in a
consistent manner.

You may copy from data from a Document Info object in the current PDF or another
PDF into XMP metadata using load_from_docinfo().

 Previous
 Next

 © Copyright 2023, James R. Barlow.
 Revision 3b7f6141.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: stable

 	Versions
	latest
	stable

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

