

 pikepdf

 stable

 Introduction

	Installation
	Tutorial

Release notes

	Release notes

Topics

	PDF split, merge, and document assembly
	Working with pages
	Object model	Making PDF objects
	Object lifecycle and memory management
	Indirect objects
	Object helpers

	Stream objects
	Working with content streams
	Working with images
	Overlays, underlays, watermarks, n-up
	Character encoding
	Metadata
	Outlines
	Name trees
	Attaching files to a PDF
	Default appearance in PDF viewers
	PDF security

API

	Main objects
	Support models
	Content streams
	Exceptions
	Settings

Reference

	Architecture
	Build process notes
	Contributing guidelines
	Debugging
	Resources

 pikepdf

 	
	Object model
	
 Edit on GitHub

Object model

This section covers the object model pikepdf uses in more detail.

A pikepdf.Object is a Python wrapper around a C++ QPDFObjectHandle
which, as the name suggests, is a handle (or pointer) to a data structure in
memory, or possibly a reference to data that exists in a file. Importantly, an
object can be a scalar quantity (like a string) or a compound quantity (like a
list or dict, that contains other objects). The fact that the C++ class involved
here is an object handle is an implementation detail; it shouldn’t matter for
a pikepdf user.

The simplest types in PDFs are directly represented as Python types: int,
bool, and None stand for PDF integers, booleans and the “null”.
Decimal is used for floating point numbers in PDFs. If a
value in a PDF is assigned a Python float, pikepdf will convert it to
Decimal.

Types that are not directly convertible to Python are represented as
pikepdf.Object, a compound object that offers a superset of possible
methods, some of which only if the underlying type is suitable. Use the
EAFP idiom, or
isinstance to determine the type more precisely. This partly reflects the
fact that the PDF specification allows many data fields to be one of several
types.

For convenience, the repr() of a pikepdf.Object will display a
Python expression that replicates the existing object (when possible), so it
will say:

>>> catalog_name = pdf.Root.Type
pikepdf.Name("/Catalog")
>>> isinstance(catalog_name, pikepdf.Name)
True
>>> isinstance(catalog_name, pikepdf.Object)
True

Making PDF objects

You may construct a new object with one of the classes:

	pikepdf.Array

	pikepdf.Dictionary

	pikepdf.Name - the type used for keys in PDF Dictionary objects

	pikepdf.String - a text string
(treated as bytes and str depending on context)

These may be thought of as subclasses of pikepdf.Object. (Internally they
are pikepdf.Object.)

There are a few other classes for special PDF objects that don’t
map to Python as neatly.

	pikepdf.Operator - a special object involved in processing content
streams

	pikepdf.Stream - a special object similar to a Dictionary with
binary data attached

	pikepdf.InlineImage - an image that is embedded in content streams

The great news is that it’s often unnecessary to construct pikepdf.Object
objects when working with pikepdf. Python types are transparently converted to
the appropriate pikepdf object when passed to pikepdf APIs – when possible.
However, pikepdf sends pikepdf.Object types back to Python on return calls,
in most cases, because pikepdf needs to keep track of objects that came from
PDFs originally.

Object lifecycle and memory management

As mentioned above, a pikepdf.Object may reference data that is lazily
loaded from its source pikepdf.Pdf. Closing the Pdf with
pikepdf.Pdf.close() will invalidate some objects, depending on whether
or not the data was loaded, and other implementation details that may change.
Generally speaking, a pikepdf.Pdf should be held open until it is no
longer needed, and objects that were derived from it may or may not be usable
after it is closed.

Simple objects (booleans, integers, decimals, None) are copied directly
to Python as pure Python objects.

For PDF stream objects, use pikepdf.Object.read_bytes() to obtain a
copy of the object as pure bytes data, if this information is required after
closing a PDF.

When objects are copied from one pikepdf.Pdf to another, the
underlying data is copied immediately into the target. As such it is possible
to merge hundreds of Pdf into one, keeping only a single source at a time and the
target file open.

Indirect objects

PDF has two ways to represented a PDF dictionary that contains another dictionary:
it can contain the inner dictionary, or provide a reference to another object.
In the PDF file itself, most objects have an object number that is for referencing.

pikepdf hides the details about whether an object is directly or indirectly
referenced, since in many situations it does not matter and manually testing each
object to see if it needs to be dereferenced before accessing it is tedious.
However, you may need to create indirect references. Sometimes, the PDF 1.7 Reference Manual
specifically requires that a value be an indirect object.

You can use pikepdf.Object.is_indirect to check if an object is actually
an indirect reference. If you require an indirect object, use
pikepdf.Pdf.make_indirect() to attach the dictionary to a Pdf and return
an indirect copy of it. Direct objects are not attached to any particular Pdf
and can be copied from one to another, just like scalars. Indirect objects
must be attached.

Stream objects are always indirect objects, and must always be attached to a
PDF.

Object helpers

pikepdf also provides pikepdf.ObjectHelper and various subclasses of
this class. Usually these are wrappers around a pikepdf.Dictionary with
special rules applicable to that type of dictionary. pikepdf.Page is
an example of an object helper. The underlying object can be accessed with
pikepdf.ObjectHelper.obj.

 Previous
 Next

 © Copyright 2023, James R. Barlow.
 Revision 3b7f6141.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: stable

 	Versions
	latest
	stable

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

