

 pikepdf

 stable

 Introduction

	Installation
	Tutorial

Release notes

	Release notes

Topics

	PDF split, merge, and document assembly
	Working with pages
	Object model
	Stream objects
	Working with content streams
	Working with images
	Overlays, underlays, watermarks, n-up
	Character encoding
	Metadata
	Outlines
	Name trees
	Attaching files to a PDF
	Default appearance in PDF viewers
	PDF security

API

	Main objects
	Support models
	Content streams
	Exceptions
	Settings

Reference

	Architecture	Internals
	Thread safety
	File handles

	Build process notes
	Contributing guidelines
	Debugging
	Resources

 pikepdf

 	
	Architecture
	
 Edit on GitHub

Architecture

pikepdf uses pybind11 to bind the
C++ interface of QPDF. pybind11 was selected after evaluating Cython, CFFI and
SWIG as possible binding solutions.

In addition to bindings pikepdf includes support code written in a mix of C++
and Python, mainly to present a clean Pythonic interface to C++ and implement
higher level functionality.

Internals

Internally the package presents a module named pikepdf from which objects
can be imported. The C++ extension module is currently named pikepdf._core.
Users of pikepdf should not directly access _core since it is an
internal interface. In previous versions, this library was named _qpdf.

In general, modules or objects behind an underscore are private (although they
may be returned in some situations).

Thread safety

Because of the global interpreter lock (GIL), it is safe to read pikepdf
objects across Python threads. Also because of the GIL, there may not be much
performance gain from doing so.

If one or more threads will be modifying pikepdf objects, you will have to
coordinate read and write access with a threading.Lock.

It is not currently possible to pickle pikepdf objects or marshall them across
process boundaries (as would be required to use pikepdf in
multiprocessing). If this were implemented, it would not be much more
efficient than saving a full PDF and sending it to another process.
Parallelizing work (for example, by dividing work by PDF pages) can still be
achieved by having each worker process open the same file.

File handles

Because of technical limitations in underlying libraries, pikepdf keeps the
source PDF file open when a content is copied from it to another PDF, even when
all Python variables pointing to the source are removed. If a PDF is being
assembled from many sources, then all of those sources are held open in memory.

 Previous
 Next

 © Copyright 2023, James R. Barlow.
 Revision 3b7f6141.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: stable

 	Versions
	latest
	stable

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

