

 pikepdf

 stable

 Introduction

	Installation
	Tutorial

Release notes

	Release notes

Topics

	PDF split, merge, and document assembly
	Working with pages
	Object model
	Stream objects
	Working with content streams
	Working with images	Playing with images
	Extracting images
	Replacing an image
	Removing an image

	Overlays, underlays, watermarks, n-up
	Character encoding
	Metadata
	Outlines
	Name trees
	Attaching files to a PDF
	Default appearance in PDF viewers
	PDF security

API

	Main objects
	Support models
	Content streams
	Exceptions
	Settings

Reference

	Architecture
	Build process notes
	Contributing guidelines
	Debugging
	Resources

 pikepdf

 	
	Working with images
	
 Edit on GitHub

Working with images

PDFs embed images as binary stream objects within the PDF’s data stream. The
stream object’s dictionary describes properties of the image such as its
dimensions and color space. The same image may be drawn multiple times on
multiple pages, at different scales and positions.

In some cases such as JPEG2000, the standard file format of the image
is used verbatim, even when the file format contains headers and information
that is repeated in the stream dictionary. In other cases such as for
PNG-style encoding, the image file format is not used directly.

pikepdf currently has no facility to embed new images into PDFs. We recommend
img2pdf instead, because it does the job so well. pikepdf instead allows
for image inspection and lossless/transcode free (where possible) “pdf2img”.

pikepdf also cannot extract vector images, that is images produced through a
combination of PDF drawing commands. These are produced by a content stream,
or sometimes a Form XObject. Unfortunately there may not be anything in the
PDF that indicates a particular sequence of operations produces an image,
and that sequence is not necessarily all in the same place. To extract a
vector image, use a PDF viewer/editor to crop to that image.

Playing with images

pikepdf provides a helper class PdfImage for manipulating
images in a PDF. The helper class helps manage the complexity of the image
dictionaries.

>>> from pikepdf import Pdf, PdfImage, Name

>>> example = Pdf.open('../tests/resources/congress.pdf')

>>> page1 = example.pages[0]

>>> list(page1.images.keys())
['/Im0']

>>> rawimage = page1.images['/Im0'] # The raw object/dictionary

>>> pdfimage = PdfImage(rawimage)

>>> type(pdfimage)
<class 'pikepdf.models.image.PdfImage'>

In Jupyter (or IPython with a suitable backend) the image will be
displayed.

You can also inspect the properties of the image. The parameters are similar
to Pillow’s.

>>> pdfimage.colorspace
'/DeviceRGB'

>>> pdfimage.width, pdfimage.height
(1000, 1520)

Note

.width and .height are the resolution of the image in pixels, not
the size of the image in page coordinates. The size of the image in page
coordinates is determined by the content stream.

Extracting images

Extracting images is straightforward. extract_to() will
extract images to a specified file prefix. The extension is determined while
extracting and appended to the filename. Where possible, extract_to
writes compressed data directly to the stream without transcoding. (Transcoding
lossy formats like JPEG can reduce their quality.)

>>> pdfimage.extract_to(fileprefix='image')
'image.jpg'

It also possible to extract to a writable Python stream using
.extract_to(stream=...`).

You can also retrieve the image as a Pillow image (this will transcode):

>>> type(pdfimage.as_pil_image())
<class 'PIL.JpegImagePlugin.JpegImageFile'>

Another way to view the image is using Pillow’s Image.show() method.

Not all image types can be extracted. Also, some PDFs describe an image with a
mask, with transparency effects. pikepdf can only extract the images
themselves, not rasterize them exactly as they would appear in a PDF viewer. In
the vast majority of cases, however, the image can be extracted as it appears.

Note

This simple example PDF displays a single full page image. Some PDF creators
will paint a page using multiple images, and features such as layers,
transparency and image masks. Accessing the first image on a page is like an
HTML parser that scans for the first tag it finds. A lot
more could be happening. There can be multiple images drawn multiple times
on a page, vector art, overdrawing, masking, and transparency. A set of
resources can be grouped together in a “Form XObject” (not to be confused
with a PDF Form), and drawn at all once. Images can be referenced by
multiple pages.

Replacing an image

In this example we extract an image and replace it with a grayscale
equivalent.

>>> import zlib

>>> rawimage = pdfimage.obj

>>> pillowimage = pdfimage.as_pil_image()

>>> grayscale = pillowimage.convert('L')

>>> grayscale = grayscale.resize((32, 32))

>>> rawimage.write(zlib.compress(grayscale.tobytes()), filter=Name("/FlateDecode"))

>>> rawimage.ColorSpace = Name("/DeviceGray")

>>> rawimage.Width, rawimage.Height = 32, 32

Notes on this example:

	It is generally possible to use zlib.compress() to
generate compressed image data, although this is not as efficient as using
a program that knows it is preparing a PDF.

	In general we can resize an image to any scale. The PDF content stream
specifies where to draw an image and at what scale.

	This example would replace all occurrences of the image if it were used
multiple times in a PDF.

Removing an image

The easy way to remove an image is to replace it with a 1x1 pixel transparent image.
A transparent image can be created by setting the /ImageMask to true.

Note that, if an image is referenced on multiple pages, this procedure only updates
the occurrence on one page. If all references to the image are deleted, it should
not be included in the output file.

>>> pdf = pikepdf.open('../tests/resources/sandwich.pdf')

>>> page = pdf.pages[0]

>>> image_name, image = next(iter(page.images.items()))

>>> new_image = pdf.make_stream(b'\xff')

>>> new_image.Width, new_image.Height = 1, 1

>>> new_image.BitsPerComponent = 1

>>> new_image.ImageMask = True

>>> new_image.Decode = [0, 1]

>>> page.Resources.XObject[image_name] = new_image

 Previous
 Next

 © Copyright 2023, James R. Barlow.
 Revision 3b7f6141.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: stable

 	Versions
	latest
	stable

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

