

 pikepdf

 stable

 Introduction

	Installation
	Tutorial

Release notes

	Release notes

Topics

	PDF split, merge, and document assembly
	Working with pages
	Object model
	Stream objects
	Working with content streams
	Working with images
	Overlays, underlays, watermarks, n-up
	Character encoding
	Metadata
	Outlines
	Name trees
	Attaching files to a PDF
	Default appearance in PDF viewers
	PDF security

API

	Main objects
	Support models
	Content streams
	Exceptions
	Settings

Reference

	Architecture
	Build process notes
	Contributing guidelines
	Debugging
	Resources

 pikepdf

 	
	pikepdf Documentation
	
 Edit on GitHub

pikepdf Documentation

A northern pike, or esox lucius.

pikepdf is a Python library allowing creation, manipulation and repair of
PDFs. It provides a Pythonic wrapper around the C++ PDF content transformation
library, QPDF.

Python + QPDF = “py” + “qpdf” = “pyqpdf”, which looks like a dyslexia test and
is no fun to type. But say “pyqpdf” out loud, and it sounds like “pikepdf”.

At a glance

pikepdf is a library intended for developers who want to create, manipulate, parse,
repair, and abuse the PDF format. It supports reading and write PDFs, including
creating from scratch. Thanks to QPDF, it supports linearizing PDFs and access
to encrypted PDFs.

Rotate all pages in a file by 180 degrees
import pikepdf

with pikepdf.Pdf.open('test.pdf') as my_pdf:
 for page in my_pdf.pages:
 page.rotate(180, relative=True)
 my_pdf.save('test-rotated.pdf')

It is a low level library that requires knowledge of PDF internals and some
familiarity with the PDF specification.
It does not provide a user interface of its own.

pikepdf would help you build apps that do things like:

Pike fish are tough, hard-fighting, aggressive predators.

	Copy pages from one PDF into another

	Split and merge PDFs

	Extract content from a PDF such as images

	Replace content, such as replacing an image without
altering the rest of the file

	Repair, reformat or linearize PDFs

	Change the size of pages and reposition content

	Optimize PDFs similar to Acrobat’s features by downsampling images,
deduplicating

	Calculate how much to charge for a scanning project based on the materials
scanned

	Alter a PDF to meet a target specification such as PDF/A or PDF/X

	Add or modify PDF metadata

	Add, remove, extract, and modify PDF attachments
(i.e. embedded files)

	Create well-formed but invalid PDFs for testing purposes

What it cannot do:

Pikemen bracing for a calvary charge, carrying pikes.

	Rasterize PDF pages for display (that is, produce an image that shows what
a PDF page looks like at a particular resolution/zoom level) – use
PyMuPDF, pypdfium2, python-poppler or Ghostscript instead

	Convert from PDF to other similar paper capture formats like epub, XPS, DjVu,
Postscript – use MuPDF or PyMuPDF

	Print to paper

If you only want to generate PDFs and not read or modify them, consider
reportlab (a “write-only” PDF generator).

Requirements

pikepdf currently requires Python 3.8+. pikepdf 1.x supports Python 3.5.
pikepdf 2.x and 3.x support Python 3.6; pikepdf 4.x through 6.x support Python
3.7. Python 2.7 has never been supported.

Similar libraries

Unlike similar Python libraries such as pypdf, pikepdf is not pure
Python. These libraries were designed prior to Python wheels which has made Python
extension libraries much easier to work with. By leveraging the existing mature
code base of QPDF, despite being new, pikepdf is already more capable than both
in many respects – for example, it can read compress object streams, repair
damaged PDFs in many cases, and linearize PDFs. Unlike those libraries, it’s not
pure Python: it is impure and proud of it.

PyMuPDF is a PDF library with impressive capabilities. However, its AGPL license
is much more restrictive than pikepdf, and its dependency on static libraries
makes it difficult to include in open source Linux or BSD distributions.

In use

pikepdf is used by the same author’s OCRmyPDF to inspect input PDFs, graft the
generated OCR layers on to page content, and output PDFs. Its code contains several
practical examples, particular in pdfinfo.py, graft.py, and
optimize.py. pikepdf is also used in its test suite.

Introduction

	Installation	Basic installation
	Binary wheel availability
	Platform support
	Installing on FreeBSD
	Building from source
	Building the documentation
	PyPy3 support

	Tutorial	Opening and saving PDFs
	Creating PDFs
	Inspecting pages
	PDF dictionaries
	Page dictionaries
	repr() output
	Item and attribute notation
	Deleting pages
	Saving changes
	Next steps

Release notes

	Release notes

Topics

	PDF split, merge, and document assembly	Split a PDF into single page PDFs
	Merge (concatenate) PDF from several PDFs
	Reversing the order of pages
	Copying pages from other PDFs
	Copying pages within a PDF
	Using counting numbers
	Accessing page labels
	Pages information from Root

	Working with pages	Page boxes

	Object model	Making PDF objects
	Object lifecycle and memory management
	Indirect objects
	Object helpers

	Stream objects	Reading stream objects
	Reading stream objects as a Python I/O streams

	Working with content streams	Pretty-printing content streams
	How content streams draw images
	Editing a content stream
	Editing content streams robustly
	Extracting text from PDFs

	Working with images	Playing with images
	Extracting images
	Replacing an image
	Removing an image

	Overlays, underlays, watermarks, n-up
	Character encoding	PDFDocEncoding
	Other codecs

	Metadata	Automatic metadata updates
	Accessing metadata
	Removing metadata items
	Checking PDF/A conformance
	Notice for application developers
	Low-level XMP metadata access
	The Document Info dictionary

	Outlines	Creating outlines
	Editing outlines
	Destinations
	Outline structure

	Name trees
	Attaching files to a PDF	General notes on attached files
	How to find attachments in a PDF viewer
	Creating attachment annotations

	Default appearance in PDF viewers
	PDF security	Password security
	PDF content restrictions
	Digital signatures and certificates

API

	Main objects	Pdf
	pikepdf.open()
	pikepdf.new()
	Access modes
	Object construction
	Common PDF data structures
	Content stream elements
	Internal objects
	Jobs

	Support models	ObjectHelper
	Page
	PdfMatrix
	PdfImage
	PdfInlineImage
	PdfMetadata
	Encryption
	Outline
	OutlineItem
	Permissions
	EncryptionInfo
	Annotation
	Attachments
	AttachedFileSpec
	AttachedFile
	NameTree
	NumberTree

	Content streams	Content stream parsers
	Content stream token filters

	Exceptions	PdfError
	PasswordError
	ForeignObjectError
	OutlineStructureError
	UnsupportedImageTypeError
	DataDecodingError
	DeletedObjectError

	Settings	get_decimal_precision()
	set_decimal_precision()
	set_flate_compression_level()

Reference

	Architecture	Internals
	Thread safety
	File handles

	Build process notes	macOS crypto provider

	Contributing guidelines	Big changes
	Code style: Python
	Code style: C++
	Tests
	New dependencies
	English style guide
	Known ports/packagers

	Debugging	Using gdb to debug C++ and Python
	Compiling a debug build of QPDF
	Compile and link against QPDF source tree
	Enabling QPDF tracing
	Valgrind
	Profiling pikepdf
	pymemtrace

	Resources

 Next

 © Copyright 2023, James R. Barlow.
 Revision 3b7f6141.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: stable

 	Versions
	latest
	stable

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

