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A northern pike, or esox lucius.



pikepdf is a Python library allowing creation, manipulation and repair of
PDFs. It provides a Pythonic wrapper around the C++ PDF content transformation
library, QPDF.

Python + QPDF = “py” + “qpdf” = “pyqpdf”, which looks like a dyslexia test and
is no fun to type. But say “pyqpdf” out loud, and it sounds like “pikepdf”.


At a glance

pikepdf is a library intended for developers who want to create, manipulate, parse,
repair, and abuse the PDF format. It supports reading and write PDFs, including
creating from scratch. Thanks to QPDF, it supports linearizing PDFs and access
to encrypted PDFs.

# Rotate all pages in a file by 180 degrees
import pikepdf

with pikepdf.Pdf.open('test.pdf') as my_pdf:
    for page in my_pdf.pages:
        page.rotate(180, relative=True)
    my_pdf.save('test-rotated.pdf')





It is a low level library that requires knowledge of PDF internals and some
familiarity with the PDF specification.
It does not provide a user interface of its own.

pikepdf would help you build apps that do things like:




Pike fish are tough, hard-fighting, aggressive predators.



	Copy pages from one PDF into another

	Split and merge PDFs

	Extract content from a PDF such as images

	Replace content, such as replacing an image without
altering the rest of the file

	Repair, reformat or linearize PDFs

	Change the size of pages and reposition content

	Optimize PDFs similar to Acrobat’s features by downsampling images,
deduplicating

	Calculate how much to charge for a scanning project based on the materials
scanned

	Alter a PDF to meet a target specification such as PDF/A or PDF/X

	Add or modify PDF metadata

	Add, remove, extract, and modify PDF attachments
(i.e. embedded files)

	Create well-formed but invalid PDFs for testing purposes



What it cannot do:




Pikemen bracing for a calvary charge, carrying pikes.



	Rasterize PDF pages for display (that is, produce an image that shows what
a PDF page looks like at a particular resolution/zoom level) – use
PyMuPDF, pypdfium2, python-poppler or Ghostscript instead

	Convert from PDF to other similar paper capture formats like epub, XPS, DjVu,
Postscript – use MuPDF or PyMuPDF

	Print to paper



If you only want to generate PDFs and not read or modify them, consider
reportlab (a “write-only” PDF generator).


Requirements

pikepdf currently requires Python 3.8+. pikepdf 1.x supports Python 3.5.
pikepdf 2.x and 3.x support Python 3.6; pikepdf 4.x through 6.x support Python
3.7. Python 2.7 has never been supported.



Similar libraries

Unlike similar Python libraries such as pypdf, pikepdf is not pure
Python. These libraries were designed prior to Python wheels which has made Python
extension libraries much easier to work with. By leveraging the existing mature
code base of QPDF, despite being new, pikepdf is already more capable than both
in many respects – for example, it can read compress object streams, repair
damaged PDFs in many cases, and linearize PDFs. Unlike those libraries, it’s not
pure Python: it is impure and proud of it.

PyMuPDF is a PDF library with impressive capabilities. However, its AGPL license
is much more restrictive than pikepdf, and its dependency on static libraries
makes it difficult to include in open source Linux or BSD distributions.



In use

pikepdf is used by the same author’s OCRmyPDF to inspect input PDFs, graft the
generated OCR layers on to page content, and output PDFs. Its code contains several
practical examples, particular in pdfinfo.py, graft.py, and
optimize.py. pikepdf is also used in its test suite.
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