

 pikepdf

 latest

 Introduction

	Installation
	Tutorial

Release notes

	Release notes

Topics

	PDF split, merge, and document assembly
	Working with pages
	Object model
	Stream objects
	Working with content streams
	Working with images
	Overlays, underlays, watermarks, n-up
	Character encoding
	Metadata
	Outlines
	Name trees
	Attaching files to a PDF
	Default appearance in PDF viewers
	PDF security

API

	Main objects
	Support models
	Content streams	Content stream parsers	parse_content_stream()
	unparse_content_stream()

	Content stream token filters	Token	Token.error_msg
	Token.raw_value
	Token.type_
	Token.value

	TokenType	TokenType.array_close
	TokenType.array_open
	TokenType.bad
	TokenType.bool
	TokenType.brace_close
	TokenType.brace_open
	TokenType.comment
	TokenType.dict_close
	TokenType.dict_open
	TokenType.eof
	TokenType.inline_image
	TokenType.integer
	TokenType.name_
	TokenType.null
	TokenType.real
	TokenType.space
	TokenType.string
	TokenType.word

	TokenFilter	TokenFilter.handle_token()

	Exceptions
	Settings

Reference

	Architecture
	Build process notes
	Contributing guidelines
	Debugging
	Resources

 pikepdf

 	
	Content streams
	
 Edit on GitHub

Content streams

In PDF, drawing operations are all performed in content streams that describe
the positioning and drawing order of all graphics (including text, images and
vector drawing).

See also

Working with content streams

pikepdf (and libqpdf) provide two tools for interpreting content streams:
a parser and filter. The parser returns higher level information, conveniently
grouping all commands with their operands. The parser is useful when one wants
to retrieve information from a content stream, such as determine the position
of an element. The parser should not be used to edit or reconstruct the content
stream because some subtleties are lost in parsing.

The token filter works at a lower level, considering each token including
comments, and distinguishing different types of spaces. This allows modifying
content streams. A TokenFilter must be subclassed; the specialized version
describes how it should transform the stream of tokens.

Content stream parsers

	
pikepdf.parse_content_stream(page_or_stream, operators='')
	Parse a PDF content stream into a sequence of instructions.

A PDF content stream is list of instructions that describe where to render
the text and graphics in a PDF. This is the starting point for analyzing
PDFs.

If the input is a page and page.Contents is an array, then the content
stream is automatically treated as one coalesced stream.

Each instruction contains at least one operator and zero or more operands.

This function does not have anything to do with opening a PDF file itself or
processing data from a whole PDF. It is for processing a specific object inside
a PDF that is already opened.

	Parameters:
		page_or_stream (pikepdf._core.Object | pikepdf._core.Page) – A page object, or the content
stream attached to another object such as a Form XObject.

	operators (str) – A space-separated string of operators to whitelist.
For example ‘q Q cm Do’ will return only operators
that pertain to drawing images. Use ‘BI ID EI’ for inline images.
All other operators and associated tokens are ignored. If blank,
all tokens are accepted.

	Return type:
	list[ContentStreamInstructions]

Example

>>> with pikepdf.Pdf.open("../tests/resources/pal-1bit-trivial.pdf") as pdf:
... page = pdf.pages[0]
... for operands, command in pikepdf.parse_content_stream(page):
... print(command)
q
cm
Do
Q

Changed in version 3.0: Returns a list of ContentStreamInstructions instead of a list
of (operand, operator) tuples. The returned items are duck-type compatible
with the previous returned items.

	
pikepdf.unparse_content_stream(instructions)
	Convert collection of instructions to bytes suitable for storing in PDF.

Given a parsed list of instructions/operand-operators, convert to bytes suitable
for embedding in a PDF. In PDF the operator always follows the operands.

	Parameters:
	instructions (Collection[UnparseableContentStreamInstructions]) – collection of instructions such as is returned
by parse_content_stream()

	Returns:
	A binary content stream, suitable for attaching to a Pdf.
To attach to a Pdf, use Pdf.make_stream()`().

	Return type:
	bytes

Changed in version 3.0: Now accept collections that contain any mixture of
ContentStreamInstruction, ContentStreamInlineImage, and the older
operand-operator tuples from pikepdf 2.x.

Content stream token filters

	
class pikepdf.Token(arg0, arg1)
		Parameters:
		arg0 (TokenType) –

	arg1 (bytes) –

	
property error_msg
	If the token is an error, this returns the error message.

	Return type:
	str

	
property raw_value
	The binary representation of a token.

	Return type:
	bytes

	
property type_
	Returns the type of token.

	Return type:
	TokenType

	
property value
	Interprets the token as a string.

	Return type:
	str

	
class pikepdf.TokenType(*args, **kwds)
	Type of a token that appeared in a PDF content stream.

When filtering content streams, each token is labeled according to the role
in plays.

	
array_close = Ellipsis
	The token data represents the end of an array.

	
array_open = Ellipsis
	The token data represents the start of an array.

	
bad = Ellipsis
	An invalid token.

	
bool = Ellipsis
	The token data represents an integer, real number, null or boolean,
respectively.

	
brace_close = Ellipsis
	The token data represents the end of a brace.

	
brace_open = Ellipsis
	The token data represents the start of a brace.

	
comment = Ellipsis
	Signifies a comment that appears in the content stream.

	
dict_close = Ellipsis
	The token data represents the end of a dictionary.

	
dict_open = Ellipsis
	The token data represents the start of a dictionary.

	
eof = Ellipsis
	Denotes the end of the tokens in this content stream.

	
inline_image = Ellipsis
	An inline image in the content stream. The whole inline image is
represented by the single token.

	
integer = Ellipsis
	The token data represents an integer.

	
name_ = Ellipsis
	The token is the name (pikepdf.Name) of an object. In practice, these
are among the most interesting tokens.

Changed in version 3.0: In versions older than 3.0, .name was used instead. This interfered
with semantics of the Enum object, so this was fixed.

	
null = Ellipsis
	The token data represents a null.

	
real = Ellipsis
	The token data represents a real number.

	
space = Ellipsis
	Whitespace within the content stream.

	
string = Ellipsis
	The token data represents a string. The encoding is unclear and situational.

	
word = Ellipsis
	Otherwise uncategorized bytes are returned as word tokens. PDF
operators are words.

	
class pikepdf.TokenFilter
		
handle_token(token=...)
	Handle a pikepdf.Token.

This is an abstract method that must be defined in a subclass
of TokenFilter. The method will be called for each token.
The implementation may return either None to discard the
token, the original token to include it, a new token, or an
iterable containing zero or more tokens. An implementation may
also buffer tokens and release them in groups (for example, it
could collect an entire PDF command with all of its operands,
and then return all of it).

The final token will always be a token of type TokenType.eof,
(unless an exception is raised).

If this method raises an exception, the exception will be
caught by C++, consumed, and replaced with a less informative
exception. Use pikepdf.Pdf.get_warnings() to view the
original.

	Parameters:
	token (Token) –

	Return type:
	None | Token | Iterable[Token]

 Previous
 Next

 © Copyright 2023, James R. Barlow.
 Revision 3b7f6141.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

