

 pikepdf

 latest

 Introduction

	Installation
	Tutorial

Release notes

	Release notes

Topics

	PDF split, merge, and document assembly
	Working with pages	Page boxes

	Object model
	Stream objects
	Working with content streams
	Working with images
	Overlays, underlays, watermarks, n-up
	Character encoding
	Metadata
	Outlines
	Name trees
	Attaching files to a PDF
	Default appearance in PDF viewers
	PDF security

API

	Main objects
	Support models
	Content streams
	Exceptions
	Settings

Reference

	Architecture
	Build process notes
	Contributing guidelines
	Debugging
	Resources

 pikepdf

 	
	Working with pages
	
 Edit on GitHub

Working with pages

This section details with how to view and edit the contents of a page.

pikepdf is not an ideal tool for producing new PDFs from scratch – and there are
many good tools for that, as mentioned elsewhere. pikepdf is better at inspecting,
editing and transforming existing PDFs.

Pages in PDFs are wrappers around dictionary objects.

>>> from pikepdf import Pdf, Page

>>> example = Pdf.open('../tests/resources/congress.pdf')

>>> page1 = example.pages[0]

>>> page1
<pikepdf.Page({
 "/Contents": pikepdf.Stream(owner=<...>, data=b'q\n200.0000 0 0 304.0'..., {
 "/Length": 50
 }),
 "/MediaBox": [0, 0, 200, 304],
 "/Parent": <reference to /Pages>,
 "/Resources": {
 "/XObject": {
 "/Im0": pikepdf.Stream(owner=<...>, data=<...>, {
 "/BitsPerComponent": 8,
 "/ColorSpace": "/DeviceRGB",
 "/Filter": ["/DCTDecode"],
 "/Height": 1520,
 "/Length": 192956,
 "/Subtype": "/Image",
 "/Type": "/XObject",
 "/Width": 1000
 })
 }
 },
 "/Type": "/Page"
})>

The page’s /Contents key contains instructions for drawing the page content.
This is a content stream, which is a stream object
that follows special rules.

Also attached to this page is a /Resources dictionary, which contains a
single XObject image. The image is compressed with the /DCTDecode filter,
meaning it is encoded with the DCT, so it is
a JPEG. pikepdf has special APIs for working with images.

The /MediaBox describes the bounding box of the page in PDF pt units
(1/72” or 0.35 mm).

You can access the page dictionary data structure directly, but it’s fairly
complicated. There are a number of rules, optional values and implied values.
To do so, you would access the page1.obj property, which returns the
underlying dictionary object that holds the page data.

Note

In pikepdf 2.x, the raw dictionary object was returned, and it was
necessary to manually wrap it with the support model:
page = Page(pdf.pages[0]). This is no longer necessary, but also
harmless.

Page boxes

>>> page1.trimbox
pikepdf.Array([0, 0, 200, 304])

Page will resolve implicit information. For example, page.trimbox
will return an appropriate trim box for this page, which in this case is
equal to the media box. This happens even if the page does not define
a trim box.

 Previous
 Next

 © Copyright 2023, James R. Barlow.
 Revision 3b7f6141.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

